
On-Demand Strong Update Analysis via
Value-Flow Refinement

Yulei Sui Jingling Xue
School of Computer Science and Engineering, UNSW, Australia

ABSTRACT
We present a new Strong UPdate Analysis for C programs,
called Supa, that enables computing points-to information
on-demand via value-flow refinement, in environments with
small time and memory budgets such as IDEs. We formulate
Supa by solving a graph-reachability problem on a value-
flow graph representation of the program, so that strong
updates are performed where needed, as long as the total
analysis budget is not exhausted. Supa facilitates efficiency
and precision tradeoffs by allowing different pointer analyses
to be applied in a hybrid multi-stage analysis framework.

We have implemented Supa in LLVM and evaluated
Supa by choosing uninitialized pointer detection as a ma-
jor client on 12 open-source C programs. As the analysis
budget increases, Supa achieves improved precision, with
its single-stage flow-sensitive analysis reaching 97% of that
achieved by whole-program flow-sensitive analysis by con-
suming about 0.19 seconds and 36KB of memory per query,
on average (with a budget of at most 10000 value-flow edges
per query).

CCS Concepts
•Software and its engineering Ñ Software verification
and validation; Software defect analysis; •Theory of com-
putation Ñ Program analysis;

Keywords
strong updates, value flow, pointer analysis, flow sensitivity

1. INTRODUCTION
Strong updates, where stores overwrite, i.e., kill the previ-

ous contents of their abstract destination locations with new
values, is an important factor in the precision of pointer anal-
ysis [14, 15, 23]. In the case of weak updates, these locations
are assumed conservatively to also retain their old contents.

A pointer analysis is (1) flow-sensitive if it respects con-
trol flow and flow-insensitive otherwise and (2) context-
sensitive if it distinguishes different calling contexts and
context-insensitive otherwise. A flow-sensitive analysis can

strongly update an abstract location written at a store if
and only if that location refers to exactly one concrete mem-
ory address. By applying strong updates where needed, an
analysis can improve precision, thereby providing significant
benefits to many clients, such as change impact analysis [2],
bug detection [58], security analysis [4], type state verifica-
tion [12], compiler optimization, and symbolic execution [5].

In this paper, we investigate how to perform strong up-
dates effectively in analyzing large C programs, for which
flow-sensitivity is important in achieving the precision re-
quired by the afore-mentioned client applications. For
object-oriented languages like Java, context-sensitivity is es-
sential in achieving useful precision [24, 26, 27, 28, 32, 33,
42, 53, 54, 56].

Ideally, strong updates at stores should be performed by
analyzing all paths independently by solving a meet-over-all-
paths (MOP) problem. However, even with branch condi-
tions ignored, this problem is intractable due to potentially
unbounded number of paths that must be analyzed [21, 38].

Instead, traditional flow-sensitive pointer analysis (FS)
for C [17, 18] computes the maximal-fixed-point solution
(MFP) as an over-approximation of MOP by solving an it-
erative data-flow problem. Thus, the data-flow facts that
reach a confluence point along different paths are merged.
Recently, sparse flow-sensitive pointer analysis (SFS) [15,
25, 35, 59, 60] boosts the performance of FS in analyzing
large C programs while maintaining the same strong updates
done by FS. The basic idea is to first conduct a pre-analysis
on the program to over-approximate its def-use chains and
then perform FS by propagating the data-flow facts, i.e.,
points-to information sparsely along only the pre-computed
def-use chains (aka value-flows) instead of all program points
in the program’s control-flow graph.

Recently, an approach [23] for performing strong updates
in C programs is introduced. It sacrifices the precision of FS
to gain efficiency by applying strong updates at stores where
flow-sensitive singleton points-to sets are available but falls
back to the flow-insensitive points-to information otherwise.

By nature, the challenge of pointer analysis is to make ju-
dicious tradeoffs between efficiency and precision. Virtually
all of the prior analyses that consider some degree of flow-
sensitivity are whole-program analyses. Precise ones are un-
scalable since they must typically consider both flow- and
context-sensitivity (FSCS) in order to maximize the num-
ber of strong updates performed. In contrast, faster ones
like [23] are less precise, due to both missing strong updates
and propagating the points-to information flow-insensitively
along all the weakly-updated (abstract) locations.

In practice, a client application may require only parts of
the program to be analyzed. In addition, some queries may
demand precise answers while others can be answered as

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...

http://dx.doi.org/10.1145/2950290.2950296

Artifact evaluated by FSE✓

460

Program Pre-
analysis Value-Flows

Stage[i]

On-Demand
Reachability SolverQueries

Out-Of-Budget[i]?

Stages

Stage[0] Stage[N-1]

Efficiency
Precision

....

Budgets No

Yes

Select i

i++

Refine

Figure 1: Overview of Supa

precisely as possible with small time and memory budgets.
In all these cases, performing strong updates blindly across
the entire program is cost-ineffective in achieving precision.

For C programs, how do we develop precise and efficient
pointer analyses that are focused and partial, paying closer
attention to the parts of the programs relevant to on-demand
queries? Existing demand-driven analyses for C [16, 61,
64] and Java [29, 41, 44, 47, 57] are flow-insensitive and
thus cannot perform strong updates to produce the preci-
sion needed by some clients. In addition, recent advances in
whole-program flow-sensitive analysis for C have exploited
some form of sparsity to improve performance [15, 25, 35,
59, 60]. However, how to replicate this success for demand-
driven flow-sensitive analysis is unclear. Finally, it remains
open as to whether sparse strong update analysis can be
performed both flow- and context-sensitively on-demand to
avoid under- or over-analyzing.

In this paper, we introduce Supa, the first value-flow
based demand-driven Strong UPdate Analysis for C, de-
signed to support flexible yet effective tradeoffs between
efficiency and precision in answering client queries, in en-
vironments with small time and memory budgets such as
IDEs. As shown in Figure 1, its novelty lies in performing
strong update analysis precisely by refining imprecisely pre-
computed value-flows away in a hybrid multi-stage analysis
framework. Given a points-to query, strong updates are per-
formed by solving a graph-reachability problem on an inter-
procedural value-flow graph that captures the def-use chains
of the program obtained conservatively by a pre-analysis.
Such over-approximated value-flows can be obtained by ap-
plying Andersen’s analysis [3] (flow-insensitively). Supa
conducts its reachability analysis on-demand sparsely along
only the pre-computed value-flows rather than control-flows.
In addition, Supa filters out imprecise value-flows by per-
forming strong updates where needed with no loss of preci-
sion as long as the total analysis budget is sufficient. The
precision of Supa depends on the degree of value-flow refine-
ment performed under a budget. The more spurious value-
flows Supa removes, the more precise the final results are.

Supa handles large programs by staging analyses in in-
creasing efficiency but decreasing precision in a hybrid man-
ner. Presently, Supa proceeds in two stages by applying
FSCS and FS in that order with a configurable budget for
each analysis. When failing to answer a query in a stage
within its alloted budget, Supa downgrades itself to a more
scalable but less precise analysis in the next stage and will
eventually fall back to the pre-computed flow-insensitive in-
formation. At each stage, Supa will re-answer the query by
reusing the points-to information found from processing the
current and earlier queries. By increasing the budgets used
in the earlier stages (e.g., FSCS), Supa will obtain improved
precision via improved value-flow refinement.

 p = &a;
 q = &c;

 a = &b;
 c = &d;

 t1 = *p;
 *p = *q;
 *q = t1;

 p = &a;
 q = &c;
 x = &b;
 y = &d;

*p = x;
*q = y;

 t1 = *p;
 t2 = *q;
 *p = t2;
 *q = t1;

(a) C code (b) Partial SSA

p q

a c

b d

p q

a c

b d

(c) Before swap (d) After swap

swap swap

Figure 2: A swap example and its partial SSA (with
the points-to relations for p and q at run time)

This paper makes the following contributions:

‚ We present the first strong update analysis for C that
enables computing precise points-to information on-
demand, with strong updates applied where needed,
by refining away imprecisely precomputed value-flows,
subject to analysis budgets.

‚ We introduce a hybrid multi-stage analysis framework
that facilitates efficiency and precision tradeoffs by
staging different analyses in answering client queries.

‚ We have produced an implementation of Supa in
LLVM with its artifact available at [1]. We choose
uninitialized pointer detection as a practical client us-
ing 12 open-source C programs. As the analysis bud-
get increases, Supa achieves improved precision, with
its single-stage flow-sensitive analysis reaching 97% of
that achieved by whole-program flow-sensitive analy-
sis, by consuming about 0.19 seconds and 36KB of
memory per query, on average (with a per-query bud-
get of at most 10000 value-flow edges traversed).

2. BACKGROUND
We describe the partial SSA form used for representing a

C program and the sparse value-flow graph used for repre-
senting conservatively its value-flows, i.e., def-use chains.

2.1 Partial SSA Form
We represent a program by putting it into LLVM’s par-

tial SSA form, following [15, 23, 25, 59, 50]. The set of all
variables V are separated into two subsets: A containing
all possible targets, i.e., address-taken variables of a pointer
and T containing all top-level variables, where V “ T YA.

After the SSA conversion, a program is represented by
five types of statements: p“&a (AddrOf), p“ q (Copy),
p“˚q (Load), ˚p“ q (Store), and p“φpq, rq (Phi). Top-
level variables are put directly in SSA form, while address-
taken variables are accessed indirectly via Load or Store.
Passing arguments into and returning results from functions
are modeled by copies. For an AddrOf statement p“&a,
known as an allocation site, a is a stack or global variable or
a dynamically created abstract heap object.

Figure 2 shows a swap program in C and its corresponding
partial SSA form, where p, q, x, y, t1, t2 P T and a, b, c, d P A.
Here, x, y, t1 and t2 are new temporaries introduced.

2.2 Sparse Value-Flow Graph
Given a program in partial SSA form, a sparse value-flow

graph (SVFG) G “ pN,Eq is a multi-edged directed graph

461

 z = *t3;

(a) A program and its SVFG (with
only indirect value-flows shown)

(d) The SUPA analysis for resolving pt(⟨ℓ16 ,z⟩) = {i} by
traversing from ⟨ℓ16 ,z⟩ backwards against the value-flows

1

[a]

[a]
[c]

[c]

[b]

[b]

[d]

[d]ℓ16:

 *q = y;

 p = &a;

 t2 = *q;

 t3 = *p;

 z = *t3;

 y = &d;

 v = &i;

 *p = t2;

 *t3 = v;

 *t3 = w;

[b] [d]

[d][b]

 q = &c;

[q]

[q]

[p]

[p]

[t2]

[y]

[t3]

[v]

[t3]

2
3 [a]

4

5 6[c]

7

8

9

SU for d

SU for a

SU for c

ℓ1:
ℓ2:

ℓ4:

ℓ6:

ℓ8:

ℓ9:

ℓ12:

ℓ13:

ℓ14:

ℓ15:

ℓ16:

p

a

q

c

b d

i u

t3

z

(b) Flow-sensitive points-to relations found
to hold at the end of the program

(with some for top-level pointers omitted)

Direct Value-flow Indirect Value-flow Points-to Spurious Points-to

p

a

q

c

b d

i u

t3

z

swap

*t3 = v;

*t3 = w;

 t3 = *p;

 v = &i;

 w = &u;

*q = t1;

 *p = t2;

 t2 = *q;

 t1 = *p;

*q = y;

*p = x;

 y = &d;

 x = &b;

 q = &c;

 p = &a;ℓ1:
ℓ2:
ℓ3:

ℓ5:
ℓ6:
ℓ7:
ℓ8:

ℓ4:

ℓ10:
ℓ9:

ℓ14:

ℓ15:

ℓ13:

ℓ11:

ℓ12:

(c) Flow-insensitive points-to relations
(with some for top-level pointers omitted)

Spurious Value-Flows

x x

x

*p = x;

[a]

[a]

x

ℓ5:

.

Query
pt(⟨ℓ16 ,z⟩) =?

Figure 3: A motivating example for illustrating the Supa analysis (with SU standing for “Strong Update”)

that captures its def-use chains conservatively. N is the set
of nodes representing all statements and E is the set of edges
representing all potential def-use chains. In particular, an
edge `1

v
ÝÑ `2, where v P V, from statement `1 to statement

`2 signifies a potential def-use chain for v with its def at
`1 and use at `2. This representation is sparse since the
intermediate program points between `1 and `2 are omitted.

As top-level variables are in SSA form, their uses have
unique definitions (with φ functions inserted at confluence

points as is standard). A def-use chain `1
t
ÝÑ `2, where t P T ,

represents a direct value-flow of t. Such def-use chains can
be found easily without requiring pointer analysis.

As address-taken variables are not (yet) in SSA form, their
indirect uses at loads may be defined indirectly at multiple
stores. We can build their def-use chains in several steps
by following [15, 51], with an illustrating example given in
Section 3. First, the points-to information in the program
is computed by a pre-analysis. Second, a load p “ ˚q is
annotated with a function µpaq for each variable a P A that
may be pointed to by q to represent a potential use of a at the
load. Similarly, a store ˚p “ q is annotated with a function
a “ χpaq for each variable a P A that may be pointed to by
p to represent a potential def and use of a at the store. If a
can be strongly updated, then a receives whatever q points
to and the old contents in a are killed. Otherwise, a must
also incorporate its old contents, resulting in a weak update
to a. Third, we convert all the address-taken variables into
SSA form, with each µpaq treated as a use of a and each
a “ χpaq as both a def and use of a. Finally, we obtain the
indirect def-use chains for an address-taken variable a P A
as follows. For a use of a identified as an (with its version

identified by n) at a load or store `, its unique definition in
SSA form is an at a store `1. Then, an indirect def-use chain
`1

a
ÝÑ ` is added to represent potentially the indirect value-

flow of a from `1 to `. Note that the φ functions introduced
for address-taken variables will now be ignored as the value
a that appears in `1

a
ÝÑ ` is not versioned.

3. A MOTIVATING EXAMPLE
Our example program, shown in Figure 3(a), is simple

(even with 16 lines). The program consists of a straight-
line sequence of code, with `1 – `10 taken directly from Fig-
ure 2(b) and the six new statements `11 – `16 added to enable
us to highlight some key properties of Supa. We assume
that u at `11 is uninitialized but i at `12 is initialized. The
SVFG embedded in Figure 3(a) will be discussed later. We
describe how Supa can be used to prove that z at `16 points
only to the initialized object i, by computing on-demand the
points-to query ptpx`16, zyq, i.e., the points-to set of z at the
program point after `16, which is defined in (1) in Section 4.

Figure 3(b) depicts the points-to relations for the six
address-taken variables and some top-level ones found at the
end of the code sequence by a whole-program flow-sensitive
analysis (with strong updates) like SFS [15]. Due to flow-
sensitivity, multiple solutions for a pointer are maintained.
In this example, these are the true relations observed at the
end of program execution. Note that SFS gives rise to Fig-
ure 2(c) by analyzing `1 – `6, Figure 2(d) by analyzing also
`7 – `10, and finally, Figure 3(b) by analyzing `11 – `16 fur-
ther. As z points to i but not u, no warning is issued for z.

Figure 3(c) shows how the points-to relations in Fig-
ure 3(b) are over-approximated flow-insensitively by apply-

462

ing Andersen’s analysis [3]. In this case, a single solution is
computed conservatively for the entire program. Due to the
lack of strong updates in analyzing the two stores performed
by swap, the points-to relations in Figures 2(c) and 2(d)
are merged, causing ˚a and ˚c to become spurious aliases.
When `11 – `16 are analyzed, the seven spurious points-to
relations (shown in dashed arrows in Figure 3(c)) are intro-
duced. Since z points to i (correctly) and u (spuriously), a
false positive for z will be issued. Failing to consider flow-
sensitivity, Andersen’s analysis is not precise for this client.

Let us now explain how Supa, shown in Figure 1, works.
Supa will first perform a pre-analysis to the example pro-
gram to build the SVFG given in Figure 3(a). For its top-
level variables, their direct value-flows, i.e., def-use chains
are explicit and thus omitted to avoid cluttering. For ex-

ample, q has three def-use chains `2
q
ÝÑ `6, `2

q
ÝÑ `8 and

`2
q
ÝÑ `10. For its address-taken variables, we first apply

Andersen’s analysis to find flow-insensitively their points-to
relations, which are given in Figure 3(c). We then obtain
the nine indirect value-flows, i.e., def-use chains depicted in
Figure 3(a), as described in Section 2. Let us see how the
two def-use chains for b are created. As t3 points to b, `14,
`15 and `16 will be annotated with b “ χpbq, b “ χpbq and
µpbq, respectively. By putting b in SSA form, these three
functions become b2 “ χpb1q, b3 “ χpb2q and µpb3q. Hence,

we have `14
b
ÝÑ `15 and `15

b
ÝÑ `16, indicating b at `16 has two

potential definitions, with the one at `15 overwriting the one
at `14. The def-use chains for d and a are built similarly.

Let us consider a single-stage analysis with Stage[N-1] “
Stage[0] “ FS in Figure 1. Figure 3(d) shows how Supa
computes ptpx`16, zyq on-demand, starting from `16, by per-
forming a backward reachability analysis on the SVFG, with
the visiting order of def-use chains marked as 1 – 9 . For-
mally, this is done in Figure 5. The def-use chains for only
the relevant top-level variables are shown. By filtering out
the four spurious value-flows (marked by), Supa finds that
only i at `12 is backward reachable from z at `16. Thus,
ptpx`16, zyq “ tiu. So no warning for z will be issued.

Supa differs from prior work in three major aspects:

‚ On-Demand Strong Updates

A whole-program flow-sensitive analysis like SFS [15]
can answer ptpx`16, zyq precisely but must accomplish
this task by analyzing all the 16 statements, resulting
in six strong updates at the six stores, with some done
unnecessarily for this query. Unfortunately, existing
whole-program FSCS or even just FS algorithms do
not scale well for large C programs [2].

In contrast, Supa computes ptpx`16, zyq precisely by
performing only three strong updates at `6, `9 and
`15. The earlier Supa performs a strong update dur-
ing its reachability analysis, the fewer the number of
statements traversed. After 1 – 8 , Supa finds that t3
points to d only. With a strong update done at `15 :
˚t3 “ v (9), Supa concludes that ptpx`16, zyq“tiu.

‚ Value-Flow Refinement

Existing demand-driven analyses [41, 44, 57, 61, 64]
are flow-insensitive and thus suffer from the same im-
precision as their flow-insensitive whole-program coun-
terparts. In the absence of strong updates, many spu-
rious aliases (such as ˚a and ˚c) result, causing z to

point to both i and u. As a result, a false positive for
z is issued, as discussed earlier.

However, Supa performs strong updates flow-
sensitively by filtering out the four spurious pre-
computed value-flows marked by . As t3 points to

d only, `15
b
ÝÑ `16 is spurious and not traversed. In ad-

dition, a strong update is enabled at `15 : ˚t3 “ v,

rendering `14
b
ÝÑ `15 and `14

d
ÝÑ `15 spurious. Finally,

`5
a
ÝÑ `9 is refined away due to another strong update

done at `9. Thus, Supa has avoided many spurious
aliases (e.g., ˚a and ˚c) introduced flow-insensitively
by pre-analysis, resulting in ptpx`16, zyq“tiu precisely.
Thus, no warning for z is issued.

‚ Query-based Precision Control

To balance efficiency and precision, Supa operates in
a hybrid multi-stage analysis framework. When asked
to answer the query ptpx`16, zyq in, say, three steps,
Supa will stop its traversal from `9 to `8 (at 4) in
Figure 3(d) and falls back to the pre-computed results
by returning ptpx`16, zyq “ tu, iu. In this case, a false
positive for z will end up being reported.

4. DEMAND-DRIVEN STRONG UPDATES
We introduce our on-demand strong update analysis (Fig-

ure 1). We first describe our inference rules in a flow-
sensitive setting (Section 4.1). We then discuss our context-
sensitive extension (Section 4.2). Finally, we examine our
hybrid multi-stage analysis framework (Section 4.3). All our
analyses are field-sensitive, as discussed in Section 5.1.

4.1 Formalism: Flow-Sensitivity
We present a formalization of a single-stage Supa consist-

ing of only a flow-sensitive (FS) analysis. Given a program,
Supa will operate on its SVFG representation Gvfg con-
structed by applying Andersen’s analysis as a pre-analysis,
as discussed in Section 2.2 and illustrated in Section 3.

Let V “ L ˆ V be the set of labeled variables lv, where
L is the set of statement labels and V “ T Y A. Supa
conducts a backward reachability analysis flow-sensitively
on Gvfg by computing a reachability relation, Ðâ Ď VˆV. In
our formalism, x`, vy Ðâ x`1, v1y signifies a value-flow from a
def of v1 at `1 to a use of v at ` through one or multiple value-
flow paths in Gvfg. For an object o created at an AddrOf
statement, i.e., an allocation site at `1, identified as x`1, oy,
we must distinguish it from x`, oy accessed elsewhere at ` in
our inference rules. Our abbreviation for x`1, oy is po.

Given x`, vy, Supa computes ptpx`, vyq, i.e., the points-to
set of x`, vy by finding all reachable target objects po:

ptpx`, vyq “ to | x`, vy Ðâ pou (1)

Despite flow-sensitivity, our formalization in Figure 4 makes
no explicit references to program points. As Supa operates
on the def-use chains in Gvfg, each variable x`, vy mentioned
in a rule appears at the point just after `, where v is defined.

Let us examine our rules in detail. By [ADDR], an object
po created at an allocation site ` is backward reachable from
p at ` (or precisely at the point after `). The pre-computed
direct value-flows across the top-level variables in Gvfg are
always precise ([COPY] and [PHI]). In partial SSA form,
[PHI] exists only for top-level variables (Section 2.2).

However, the indirect value-flows across the address-taken
variables in Gvfg can be imprecise; they need to be refined on

463

[ADDR]
` : p “ &o
x`, py Ðâ po [COPY]

` : p “ q `1
q
ÝÑ `

x`, py Ðâ x`1, qy
[PHI]

` : p “ φpq, rq `1
q
ÝÑ ` `2

r
ÝÑ `

x`, py Ðâ x`1, qy x`, py Ðâ x`2, ry

[LOAD]
` : p “ ˚q `2

q
ÝÑ ` x`2, qy Ðâ po `1

o
ÝÑ `

x`, py Ðâ x`1, oy
[STORE]

` : ˚p “ q `2
p
ÝÑ ` x`2, py Ðâ po `1

q
ÝÑ `

x`, oy Ðâ x`1, qy

[SU/WU]
` : ˚p “ `1

o
ÝÑ ` o P Az killp`, pq

x`, oy Ðâ x`1, oy
[COMPO] lv Ðâ lv1 lv1 Ðâ lv2

lv Ðâ lv2

killp`, pq “

$

’

&

’

%

to1u if ptpx`, pyq“to1u ^ o1 P singletons

A else if ptpx`, pyq“∅
∅ otherwise

Figure 4: Single-stage flow-sensitive Supa analysis with demand-driven strong updates

`13 : t3 “ ˚p `1
p
ÝÑ `13

`1 : p “ &a

x`1, py Ðâ pa
[ADDR] `9

a
ÝÑ `13

x`13, t3y Ðâ x`9, ay
[LOAD]

`9 : ˚p “ t2 `1
p
ÝÑ `9 x`1, py Ðâ pa `8

t2
ÝÑ `9

x`9, ay Ðâ x`8, t2y
[STORE]

x`13, t3y Ðâ x`8, t2y
[COMPO]

(a) Deriving ptpx`13, t3yq (corresponding to 1 – 4 in Figure 3(d))

x`13,t3y Ðâx`8,t2y

`8 : t2“˚q `2
q
ÝÑ`8

`2 :q“&c

x`2, qyÐâpc
[ADDR]`6

c
ÝÑ`8

x`8, t2yÐâx`6, cy
[LOAD]

x`13, t3yÐâx`6, cy
[COMPO]

`6 :˚q“y `2
q
ÝÑ`6 x`2, qyÐâpc `4

y
ÝÑ `6

x`6,cy Ðâx`4,yy
[STORE]

x`13,t3y Ðâx`4,yy
[COMPO]

`4 :y“&d

x`4,yy Ðâ pd
[ADDR]

x`13,t3y Ðâ pd
[COMPO]

(b) Deriving ptpx`13, t3yq (corresponding to 5 – 7 in Figure 3(d))

`16 : z“˚t3 `13
t3
ÝÑ`16 x`13, t3yÐâ pd `15

d
ÝÑ `16

x`16, zyÐâx`15, dy
[LOAD]

`15 : ˚t3“v `13
t3
ÝÑ`15 x`13, t3yÐâ pd `12

v
ÝÑ`15

x`15, dyÐâx`12, vy
[STORE]

x`16, zy Ðâ x`12, vy
[COMPO]

`12 : v“&i

x`12, vy Ðâ pi
[ADDR]

x`16, zy Ðâ pi
[COMPO]

(c) Deriving ptpx`16, zyq (corresponding to 8 – 9 in Figure 3(d))

Figure 5: Reachability derivations for ptpx`16, zyq shown in Figure 3(d) (with reuse of cached points-to results
inside each box)

the fly to remove the spurious aliases thus introduced. When
handling a load p “ ˚q in [LOAD], we can traverse backwards
from p at ` to the def of o at `1 only if o is actually used
by, i.e., aliased with ˚q at `, which requires the reachability
relation x`2, qy Ðâ po to be computed recursively. A store
˚p “ q is handled similarly ([STORE]): q defined at `1 can be
reached backwards by o at ` only if o is aliased with ˚p at `.

If ˚q in a load ¨ ¨ ¨ “ ˚q is aliased with ˚p in a store ˚p “
¨ ¨ ¨ executed earlier, then p and q must be both backward
reachable from po. Otherwise, any alias relation established
between ˚p and ˚q in Gvfg by pre-analysis must be spurious
and will thus be filtered out by value-flow refinement.
[SU/WU] models strong and weak updates at a store

` : p“ . Defining its kill set killp`, pq involves three cases.
In Case (1), p points to one singleton object o1 in singletons,
which contains all objects in A except the local variables
in recursion, arrays (treated monolithically) or heap ob-
jects [23]. In Section 4.2, we discuss how to apply strong
updates to heap objects context-sensitively. A strong up-

date is then possible to o. By killing its old contents at `1,
no further backward traversal along the def-use chain `1

o
ÝÑ `

is needed. Thus, x`, oy Ðâ x`1, oy is falsified. In Case (2), the
points-to set of p is empty. Again, further traversal to x`1, oy
must be prevented to avoid dereferencing a null pointer as
is standard [14, 15, 23]. In Case (3), a weak update is per-
formed to o so that its old contents at `1 are preserved. Thus,
x`, oy Ðâ x`1, oy is established, which implies that the back-

ward traversal along `1
o
ÝÑ ` must continue.

Finally, Ðâ is transitive, stated by [COMPO].
Let us try all our rules, by first revisiting our motivat-

ing example where strong updates are performed extensively
(Example 1) and then examining weak updates (Example 2).

Example 1. Figure 5 shows how we apply the rules of Supa
to answer ptpx`16, zyq illustrated in Figure 3(d). [SU/WU]

(implicit in these derivations) is applied to `6, `9 and `15 to
cause a strong update at each store. At `6, ptpx`6, qyq “ tcu,

the old contents in c are killed. At `9, `5
a
ÝÑ `9 becomes

464

spurious since x`9, ay Ðâ x`5, ay is falsified. At `15, `14
b
ÝÑ

`15 and `14
d
ÝÑ`15 are filtered out since x`15, byÐâx`14, by and

x`15, dyÐâx`14, dy are falsified. Finally, `15
b
ÝÑ `16 is ignored

since t3 points to d only ([LOAD]). l

Supa improves performance by caching points-to results
to reduce redundant traversal, with reuse happening in the
marked boxes in Figure 5. For example, in Figure 5(c),

ptpx`13, t3yq “ tpdu computed in [LOAD] is reused in [STORE].

Example 2. Let us consider a weak update example in Fig-
ure 6 by computing ptpx`11, zyq on-demand. At the conflu-
ence point `9, p3 receives the points-to information from both
p1 and p2 in its two branches: x`9, p3y Ðâ pa and x`9, p3y Ðâ pe.
Thus, a weak update is performed to the two locations a and
e at `10. Let us focus on pa only. By applying [STORE],

x`10, ay Ðâ x`4, ry Ðâ pd. By applying [SU/WU], x`10, ay Ðâ

x`6, ay Ðâ x`3, yy Ðâ pc. Thus, ptpx`11, ayq “ tc, du, which
excludes b due to a strong update performed at `6. As
ptpx`7, qyq “ tau, we obtain ptpx`11, zyq “ tc, du. l

 p1 = &a;
 x = &b;
 y = &c;
 r = &d;
 *p1 = x;
 *p1 = y;
 q = p1

 if(*) p2 = &e;
 p3 = !(p1,p2);

 *p3 = r;

 z = *q;

ℓ1:

ℓ8:
ℓ9:
ℓ10:

ℓ2:
ℓ3:

ℓ5:
ℓ6:
ℓ7:

ℓ11:

[a]

[a]

WU for a
[a]

Andersen's
Points-to:

 pt(p1) = {a}
 pt(p2) = {e}

 pt(p3) = {a,e}
 pt(q) = {a}
 pt(x) = {b}
 pt(y) = {c}
 pt(r) = {d}

 pt(a) = {b,c,d}
 pt(z) = {b,c,d}

SU for a

Query
pt(⟨ℓ11 ,z⟩) =?

ℓ4:

Direct value-flow Indirect value-flow

Figure 6: Resolving ptpx`11, zyq“ tc, du with a weak
update

Unlike [23], which falls back to the flow-insensitive points-
to information for all weakly updated objects, Supa handles
them as precisely as (whole-program) flow-sensitive analysis
given a sufficient budget. In Figure 6, due to a weak up-
date performed to a at `10, ptpx`10, ayq “ tc, du is obtained,
forcing their approach to adopt ptpx`10, ayq “ tb, c, du there-
after, causing ptpx`11, zyq “ tb, c, du. By maintaining flow-
sensitivity with a strong update applied to `6 to kill b, Supa
obtains ptpx`11, zyq “ tc, du precisely.

4.1.1 Handling Value-Flow Cycles
To compute soundly and precisely the points-to informa-

tion in a value-flow cycle, Supa retraverses it whenever new
points-to information is found until a fix point is reached.

Example 3. Figure 7 shows a value-flow cycle formed by
`5

x
ÝÑ `6 and `6

z
ÝÑ `5. To compute ptpx`6, zyq, we must com-

pute ptpx`5, xyq, which requires the aliases of ˚z at the load
`5 : x “ ˚z to be found by using ptpx`6, zyq. Supa computes
ptpx`6, zyq by analyzing this value-flow cycle in two itera-

tions. In the first iteration, a pointed-to target pb is found

since x`6, zy Ðâ x`4, yy Ðâ pb. Due to x`2, qy Ðâ pb, ˚z and ˚q

 p = &a;
 q = &b;
 *q = p;

 y = &b;
 x = *z;

 z = !(x,y);

ℓ2:
ℓ3:
ℓ4:
ℓ5:

ℓ6:

[b]

[z]
[x]

.

Query
pt(⟨ℓ5 ,z⟩) =?

Direct Value-flow Indirect Value-flow

ℓ1:

Figure 7: Resolving ptpx`5, zyq“ ta, bu in a value-flow
cycle

are found to be aliases. In the second iteration, another tar-
get pa is found since x`6, zy Ðâ x`5, xy Ðâ x`3, by Ðâ x`1, py Ðâ

pa. Thus, ptpx`6, zyq “ ta, bu is obtained. l

4.1.2 Call Graph Refinement
Unlike [15], which uses an imprecisely pre-computed call

graph during its analysis, Supa refines it on-the-fly. Let us
consider how to resolve the points-to set of z at an indirect
callsite ` : z “ p˚fpqpq. Instead of analyzing all the callees
found by the pre-analysis, Supa recursively computes the
points-to set of fp to discover new callees at the callsite and
then continues refining ptpx`, zyq using the new callees.

4.1.3 Properties

Theorem 1 (Soundness). Supa is sound in analyzing a
program as long as its pre-analysis is sound.

Proof Sketch. When building the SVFG for a program,
the def-use chains for its top-level variables are identified ex-
plicitly in its partial SSA form. If the pre-analysis is sound,
then the def-use chains built for all the address-taken vari-
ables are over-approximate. According to its inference rules
in Figure 4, Supa performs essentially a flow-sensitive anal-
ysis on-demand, by restricting the propagation of points-to
information along the precomputed def-use chains, and falls
back to the sound points-to information computed by the
pre-analysis when running out of its given budgets. Thus,
Supa is sound if the pre-analysis is sound.

Theorem 2 (Precision). Given x`, vy, ptpx`, vyq computed
by Supa is the same as that computed by (whole-program)
FS if Supa can successfully resolve it within a given budget.

Proof Sketch. Let ptSupapx`, vyq and ptFSpx`, vyq be the
points-to sets computed by Supa and FS, respectively. By
Theorem 1, ptSupapx`, vyq Ě ptFSpx`, vyq, since Supa is a
demand-driven version of FS and thus cannot be more pre-
cise. To show that ptSupapx`, vyq Ď ptFSpx`, vyq, we note
that Supa operates on the SVFG of the program to im-
prove its efficiency, by also filtering out value-flows impre-
cisely pre-computed by the pre-analysis. For the top-level
variables, their direct value-flows are precise. So Supa pro-
ceeds exactly the same as FS ([ADDR], [COPY], [PHI] and
[COMPO]). For the address-taken variables, Supa establishes
the same indirect value-flows flow-sensitively as FS does
but in a demand-driven manner, by refining away impre-
cisely pre-computed value-flows ([LOAD], [STORE], [SU/WU]
and [COMPO]). If Supa can complete its query within the
given budget, then ptSupapx`, vyq Ď ptFSpx`, vyq. Thus,
ptSupapx`, vyq “ ptFSpx`, vyq.

465

[C-ADDR]
c, ` : p “ &o

xc, `, py Ðâ pc, poq [C-COPY]
c, ` : p “ q `1

q
ÝÑ `

xc, `, py Ðâ xc, `1, qy
[C-PHI]

c, ` : p “ φpq, rq `1
q
ÝÑ ` `2

r
ÝÑ `

xc, `, py Ðâ xc, `1, qy xc, `, py Ðâ xc, `2, ry

[C-LOAD]
c, ` : p “ ˚q `2

q
ÝÑ ` xc, `2, qy Ðâ pc1, poq `1

o
ÝÑ `

xc, `, py Ðâ xc1, `1, oy
[C-STORE]

c, ` : ˚p “ q `2
p
ÝÑ ` xc, `2, py Ðâ pc1, poq `1

q
ÝÑ `

xc1, `, oy Ðâ xc, `1, qy

[C-SU/WU]
c, ` : ˚p “ `1

o
ÝÑ ` pc1, oq P Az killpc, `, pq

xc1, `, oy Ðâ xc1, `1, oy
[C-COMPO] lv Ðâ lv1 lv1 Ðâ lv2

lv Ðâ lv2

[C-CALL]
c, `calκ : v “ v1 c1 “ ca κ `1

v1

ÝÑ `calκ
xc, `calκ , vy Ðâ xc1, `1, v1y

[C-RET]
c, `retκ : v “ v1 c1 “ c‘ κ `1

v1

ÝÑ `retκ
xc, `retκ , vy Ðâ xc1, `1, v1y

killpc, `, pq “

$

’

&

’

%

tpc1, o1qu if ptpxc, `, pyq“tpc1, o1qu ^ pc1, o1q P cxtSingletons

A else if ptpxc, `, pyq“∅
∅ otherwise

Figure 8: Single-stage flow- and context-sensitive Supa analysis with demand-driven strong updates

4.2 Formalism: Flow- and Context-Sensitivity
We extend our flow-sensitive formalization by considering

also context-sensitivity to enable more strong updates (espe-
cially now for heap objects). We solve a balanced-parentheses
problem by matching calls and returns to filter out unreal-
izable inter-procedural paths [29, 40, 41, 44, 57]. A context
stack c is encoded as a sequence of callsites, [κ1 . . . κm]. c‘κ
denotes an operation for pushing a callsite κ into c. c a κ
pops κ from c if c contains κ as its top value or is empty since
a realizable path may start and end in different functions.

With context-sensitivity, a statement is parameterized ad-
ditionally by a context c, e.g., c, ` : p“&o, to represent its
instance when its containing function is analyzed under c. A
labeled variable lv has the form xc, `, vy, representing vari-
able v accessed at statement ` under context c. An object po
that is created at an AddrOf statement under context c is
also context-sensitive, identified as pc, poq.

Given xc, `, vy, Supa computes its points-to set context-
sensitively by applying the rules given in Figure 8:

ptpxc, `, vyq “ tpc1, oq | xc, `, vy Ðâ pc1, poqu

where the reachability relation Ðâ is now context-sensitive.
Passing parameters to and returning results from a callee

invoked at a callsite κ are modeled by copies (v “ v1) [15,
51, 60]. In [C-CALL], v1 P V denotes a variable passed into
the callee directly or indirectly via parameter passing. Sim-
ilarly, v1 in [C-RET] represents a value returned directly or
indirectly from the callee to its caller. Such def-use chains
are built in the same way as others (Section 2.2), based on
the points-to information obtained by pre-analysis.

With context-sensitivity, Supa will filter out more spu-
rious value-flows, thereby producing more precise points-to
information to enable more strong updates ([C-SU/WU]). At
a store c, ` : ˚p “ , its kill set is context-sensitive. A strong
update is applied if p points to a context-sensitive singleton
pc1, o1q P cxtSingletons, where o1 is a (non-heap) singleton
defined in Section 4.1 or a heap object with c1 being a con-
crete context, i.e., one not involved in recursion or loops.

For a given program, the SCCs (strongly connected com-
ponents) in its call graph are constructed on the fly. Supa
handles the SCCs in the program context-sensitively but the
function calls inside a SCC context-insensitively as in [44].

4.3 SUPA: Hybrid Multi-Stage Analysis
To facilitate efficiency and precision tradeoffs in answer-

ing on-demand queries, Supa, as illustrated in Figure 1, or-

ganizes its analyses in multiple stages sorted in increasing
efficiency but decreasing precision. Let there be M queries
issued successively from the program. Let the N stages of
Supa, Stage[0] , ¨ ¨ ¨ ,Stage[N-1] , be configured with bud-
gets η0, ¨ ¨ ¨ , ηN´1, respectively. In our current implementa-
tion, each budget is specified as the maximum number of
def-use chains traversed in the SVFG of the program.

Supa answers a query on-demand by applying its N anal-
yses successively, starting from Stage[0] . If the query is
not answered after budget ηi has been exhausted at stage i,
Supa re-issues the query at stage i` 1, and eventually falls
back to the results pre-computed by pre-analysis.

Supa caches fully computed points-to information in a
query and reuses it in subsequent queries, as illustrated in
Figure 5. Let Q be the set of queried variables issued from
a program. Let I Ě Q be the set of variables reached from
Q during the analysis. Let p`, vq P Q be a queried variable.
We write ptiηipx∆i, `, vyq to represent the points-to set of a
variable x`, vy computed at stage i under budget ηi, where
∆i is a contextual qualifier at stage i (e.g., c in FSCS).
By convention, ptNηN px∆N , `, vyq denotes the points-to set
obtained by pre-analysis, at Stage[N] (conceptually).

When resolving ptiηipx∆i, `, vyq at stage i, suppose Supa

has reached a variable x`1, v1y P I and needs to compute
pti˚px∆i, `

1, v1yq, where ˚pď ηi) represents an unknown bud-
get remaining, with p`1, v1q being p`, vq possibly (in a cycle).

Presently, Supa exploits two types of reuse to improve
efficiency with no loss of precision in a hybrid manner:

Backward Reuse: p`1, v1q P I If ptj˚px∆j , `
1, v1yq, where

j ď i, was previously cached, then pti˚px∆i, `
1, v1yq “

ptj˚px∆j , `
1, v1yq, provided that ptj˚px∆j , `

1, v1yq is a

sound representation of pti˚px∆i, `
1, v1yq. For exam-

ple, if Stage[i] “ FS and Stage[j] “ FSCS, then
ptFSCS˚ pxc1, `1, v1yq can be reused for ptFS˚ px`1, v1yq if c1

is true, representing a context-free points-to set.

Forward Reuse: p`1, v1q P Q If ptjηj px∆j , `
1, v1yq, where

j ą i, was previously computed and cached but
ptkηk px∆k, `

1, v1yq was not, where 0 ď k ă j, then Supa

will also fail for ptk˚px∆k, `
1, v1yq, where i ď k ă j, since

˚ ď ηk. Therefore, Supa will exploit the second type
of reuse by setting pti˚px∆i, `

1, v1yq “ ptjηj px∆j , `
1, v1yq.

Of course, many other schemes are possible with or with-
out precision loss and will be investigated in future work.

466

5. EVALUATION
We evaluate Supa by choosing detection of uninitialized

pointers as a major client. The objective is to show that
Supa is effective in answering client queries, in environments
with small time and memory budgets such as IDEs, by facil-
itating efficiency and precision tradeoffs in a hybrid multi-
stage analysis framework. We provide evidence to demon-
strate (for the first time) a good correlation between the
number of strong updates performed on-demand and the
degree of precision achieved during the analysis.

5.1 Implementation
We have implemented Supa in LLVM (3.5.0). The source

files of a program are compiled under “-O0” (to facilitate de-
tection of undefined values [63]) into bit-code by clang and
then merged using the LLVM Gold Plugin at link time
to produce a whole program bc file. The compiler option
mem2reg is always applied to promote memory into regis-
ters. Otherwise, SUPA will perform more strong updates
on memory locations that would otherwise be promoted to
registers, favoring SUPA undesirably.

All the analyses used are field-sensitive. Each field in-
stance of a struct is treated as a separate object. Analyzing a
field operation, e.g., x1 “ x GetElementPtr f in the LLVM IR
is similar as handling a [COPY] statement. The only differ-
ence is that ptpx1q must include the field objects at the offset
f of the pointed-to targets in ptpxq: ptpx1q “ to.f |o P ptpxqu.
Arrays are considered monolithic. Positive weight cycles
that arise from processing fields of struct objects are col-
lapsed [36]. Distinct allocation sites (i.e., AddrOf state-
ments) are modeled by distinct abstract objects as in [15].

We build the SVFG for a program based on our open-
source software, SVF [49]. The def-use chains are pre-
computed by Andersen’s algorithm flow-insensitively.

To compare Supa with whole-program analysis, we have
implemented a sparse flow-sensitive (SFS) analysis de-
scribed in [15] also in LLVM, as SFS is a recent solution
yielding exactly the flow-sensitive precision with good scal-
ability. However, there are some differences. In [15], SFS
was implemented in LLVM (2.5.0), by using imprecisely pre-
computed call graphs and representing points-to sets with
binary decision diagrams (BDDs). In this paper, just like
Supa, SFS is implemented in LLVM (3.5.0), by building a
program’s call graph on the fly (Section 4.1) and represent-
ing points-to sets with sparse bit vectors.

We have not implemented a whole-program FSCS pointer
analysis in LLVM. There is no open-source implementation
either in LLVM. According to [2], existing FSCS algorithms
for C “do not scale even for an order of magnitude smaller
size programs than those analyzed”by Andersen’s algorithm.
As shown here, SFS can already spend hours on analyzing
some programs under 500 KLOC.

5.2 Methodology
We choose uninitialized pointer detection as a major

client, named Uninit, which requires strong update analysis
to be effective. As a common type of bugs in C programs,
uninitialized pointers are dangerous, as dereferencing them
can cause system crashes and security vulnerabilities. For
Uninit, flow-sensitivity is crucial. Otherwise, strong updates
are impossible, making Uninit checks futile.

We will show that Supa can answer Uninit’s on-demand
queries efficiently while achieving nearly the same precision

Table 1: Program characteristics
Program KLOC Statements Pointers Alloc Sites Queries

milc-v6 15 11713 29584 865 3
less-451 27.1 6766 22835 1135 100
hmmer-2.3 36 27924 74689 1472 2043
make-4.1 40.4 14926 36707 1563 1133
a2ps-4.14 64.6 49172 116129 3625 5065
bison-3.0.4 113.3 36815 90049 1976 4408
grep-2.21 118.4 10199 33931 1108 562
tar-1.28 132 30504 85727 3350 909
bash-4.3 155.9 59442 191413 6359 5103
sendmail-8.15 259.9 86653 256074 7549 2715
vim-7.4 413.1 147550 466493 8960 6753
emacs-24.4 431.9 189097 754746 12037 4438
Total 1807.6 670761 2158377 49999 33232

as SFS. For C, global and static variables are default ini-
tialized, but local variables are not. In order to mimic the
default uninitialization at a stack or heap allocation site
` : p “ &a for an uninitialized pointer a, we add a special
store ˚p“ u immediately after `, where u points to an un-
known abstract object (UAO), ua. Given a load x“ ˚y, we
can issue a points-to query for x to detect its potential unini-
tialization. If x points to a ua (for some a), then x may be
uninitialized. By performing strong updates more often, a
flow-sensitive analysis can find more UAO’s that do not reach
any pointer and thus prove more pointers to be initialized.
Note that SFS can yield false positives since, for example,
path correlations are not modeled.

We do not introduce UAO’s for the local variables involved
in recursion and array objects since they cannot be strongly
updated. We also ignore all the default-initialized stack or
heap objects (e.g., those created by calloc()).

We generate meaningful points-to queries, one query for
the top-level variable x at each load x “ ˚y. However, we
ignore this query if x is found not to point to any UAO by
pre-analysis. This happens only when x points to either
default-initialized objects or unmodeled local variables in
recursion cycles or arrays. The number of queries issued in
each program is listed in the last column in Table 1.

5.3 Experimental Setup
We use a machine with a 3.7G Hz Intel Xeon 8-core

CPU and 64 GB memory. As shown in Table 1, we have
selected 12 open-source programs (including nine recently
released applications) from a variety of areas: milc-v6
(quantum chromodynamics), less-451 (a terminal pager),
hmmer-2.3 (sequence similarity searching), make-4.1,
a2ps-4.14 (a postScript filter), bison-3.04 (a parser),
grep-2.2.1, tar-1.28, bash-4.3, sendmail-8.15.1,
vim74, and emacs-24.4.

For each program, Table 1 lists its number of lines of code,
statements, pointers, allocation sites (or AddrOf state-
ments), and queries issued (as discussed in Section 5.2).

5.4 Results and Analysis
We evaluate Supa with two configurations, Supa-FS and

Supa-FSCS. Supa-FS is a one-stage FS analysis by con-
sidering flow-sensitivity only. Supa-FSCS is a two-stage
analysis consisting of FSCS and FS applied in that order.

5.4.1 Evaluating Supa-FS

When assessing Supa-FS, we consider two criteria: effi-

467

101 102 103 104 105
0.0001

0.001

0.01

0.1

1

10

0.0002

0.0004
0.0009 0.0021

0.0040
0.0084 0.0209

0.0356
0.0727 0.1867

0.4301
0.8495 2.4762

2.8794

Budget

T
im

e
p
er

q
u
er
y
(s
ec
s)

101 102 103 104 105
0.01

0.1

1

10

100

1,000

0.06

0.06
0.10 0.22

0.30 0.40
0.74

1.68

5.41
35.33

68.24
135.78

280.26

360.67

Budget

M
em

or
y
u
sa
ge

(K
B
)

(a) Analysis Time (b) Memory Usage

Figure 9: Average analysis time and memory usage per query consumed by Supa-FS under different budgets

ciency (its analysis time and memory usage per query) and
precision (its competitiveness against SFS). For each query,
its analysis budget, denoted B, represents the maximum
number of traversed def-use chains. We consider a wide
range of budgets with B falling into r10, 200000s.

Supa-FS is highly effectively. With B “ 10000, Supa-FS
is nearly as precise as SFS, by consuming about 0.19 seconds
and 36KB of memory per query, on average.

Table 2: Pre-processing times taken by pre-analysis
shared by Supa and SFS and analysis times of SFS
(in seconds)

Program
Pre-Analysis Times Analysis

Shared by Supa and SFS Time of
Andersen’s Analysis SVFG Total SFS

milc 0.42 0.1 0.52 0.16
less 0.42 0.37 0.79 1.94

hmmer 1.57 0.46 2.03 1.07
make 1.74 1.17 2.91 13.94
a2ps 7.34 1.31 8.65 60.61
bison 8.18 3.66 11.84 44.16
grep 1.44 0.17 1.61 2.39
tar 2.73 1.71 4.44 12.27

bash 53.48 44.07 97.55 2590.69
sendmail 24.05 23.43 47.48 348.63

vim 445.88 85.69 531.57 13823
emacs 135.93 146.94 282.87 8047.55

Efficiency. Figure 9(a) shows the average analysis time per
query for all the programs under a given budget, with about
0.19 seconds when B“10000 and about 2.88 seconds when
B“200000. Both axes are logarithmic. The longest-running
queries can take an order of magnitude as long as the average
cases. However, most queries (around 70% – 80% across
the programs) take much less than the average cases. For
emacs, SFS takes over two hours (8047.55 seconds) to finish.
In contrast, Supa-FS spends less than ten minutes (502.10
seconds) when B “ 2000, with an average per-query time
(memory usage) of 0.18 seconds (0.12KB), and produces the
same answers for all the queries as SFS (Figure 10).

For Supa, its pre-analysis is lightweight, as shown in Ta-
ble 2. with vim taking the longest at 531.57 seconds. The
same pre-analysis is shared by SFS to enable its sparse anal-
ysis. The additional time taken by SFS for analyzing each
program entirely is given in the last column.

Figure 9(b) shows the average memory usage per query
under different budgets. Following the common practice,
we measure the real-time memory usage by reading the vir-
tual memory information (VmSize) from the linux kernel file
(/proc/self/status). The memory monitor starts after
the pre-analysis to measure the memory usage for answer-

m
ilc le
ss

hm
m
er

m
ak
e

a2
ps

bi
so
n

gr
ep ta
r

ba
sh

se
nd
m
ai
l

vi
m

em
ac
s0%

20%

40%

60%

80%

100% B=200k

B=100k

B=40k

B=20k

B=10k

B=4k

B=2k

B=1k

B=400

B=200

B=100

B=40

B=20

B=10

Figure 10: Percentage of queried variables proved to
be initialized by Supa-FS over SFS under different
budgets

ing queries only. The average amount of memory consumed
per query is small, with about 36KB when B “ 10000 and
about 360KB when B“200000. Even under the largest bud-
get B “ 200000 evaluated, Supa-FS never uses more than
3MB for any single query processed.

Precision. Given a query ptpx`, py), p is initialized if no
UAO is pointed by p and potentially uninitialized otherwise.
We measure the precision of Supa-FS in terms of the per-
centage of queried variables proved to be initialized by com-
paring with SFS, which yields the best precision achievable
as a whole-program flow-sensitive analysis.

Figure 10 reports our results. As B increases, the pre-
cision of Supa-FS generally improves. With B “ 10000,
Supa-FS can answer correctly 97% of all the queries from
the 12 programs. These results indicate that our analysis is
highly accurate, even under tight budgets. For the 12 pro-
grams except a2ps, bison and bash, Supa-FS produces
the same answers for all the queries when B “ 100000 as
SFS. When B “ 200000 for these three programs, Supa
becomes as precise as SFS, by taking an average of 0.02 sec-
onds (88.5KB) for a2ps, 0.25 seconds (194.7KB) for bison,
and 3.18 seconds (1139.3KB) for bash, per query.

Understanding On-Demand Strong Updates. Let us
examine the benefits achieved by Supa-FS in answering
client queries by applying on-demand strong updates. For
each program, Figure 11 shows a good correlation between
the number of strong updates performed (#SU on the left
y-axis) in a blue curve and the number of UAO’s reaching
some uninitialized pointers (#UAO on the right y-axis)
in a red curve under varying budgets (on the logarithmic
x-axis). The number of such UAO’s reported by SFS is
shown as the lower bound for Supa-FS in a dashed line.

468

Number of strong updates Number of UAO by Supa Number of UAO by SFS

101 103 105

0

5

10

15

20

Budget

#SU milc

101 103 105

0

2

4

6

#UAO

101 103 105

0

100

200

300

Budget

#SU less

101 103 105

0

20

40

60

#UAO

101 103 105

0

50

100

150

200

Budget

#SU hmmer

101 103 105

0

50

100

150

#UAO

101 103 105

0

50

100

150

200

Budget

#SU make

101 103 105

0

10

20

30

40

#UAO

101 103 105

0

500

1,000

1,500

Budget

#SU a2ps

101 103 105

0

20

40

60

#UAO

101 103 105

0

500

1,000

1,500

Budget

#SU bison

101 103 105

0

50

100

150

#UAO

101 103 105

0

50

100

150

200

Budget

#SU grep

101 103 105

0

10

20

30

#UAO

101 103 105

0

200

400

600

Budget

#SU tar

101 103 105

0

20

40

60

80

100

#UAO

101 103 105

0

100

200

300

400

Budget

#SU bash

101 103 105

0

10

20

30

#UAO

101 103 105

0

200

400

600

800

Budget

#SU sendmail

101 103 105

0

50

100

150

#UAO

101 103 105

0

1,000

2,000

3,000

Budget

#SU vim

101 103 105

0

100

200

300

#UAO

101 103 105

0

500

1,000

1,500

Budget

#SU emacs

101 103 105

0

20

40

60

80

#UAO

Figure 11: Correlating the number of strong updates with the number of UAO’s under different budgets

In most programs, Supa-FS performs increasingly more
strong updates to block increasingly more UAO’s to reach
the queried variables as the analysis budget B increases,
because Supa-FS falls back increasingly less frequently from
FS to the pre-computed points-to information. When B
increases, Supa-FS can filter out more spurious value-flows
in the SVFG to obtain more precise points-to information,
thereby enabling more strong updates to kill the UAO’s.

When B “ 200000, Supa-FS gives the same answers as
SFS in all the 12 programs except bison and vim, which
causes Supa-FS to report 16 and 35 more, respectively.

For some programs such as milc, hmmer and grep, most
of their strong updates happen under small budgets (e.g.,
B “ 1000). In hmmer, for example, 192 strong updates are
performed when B “ 10000. Of the 5126 queries issued,
Supa-FS runs out-of-budget for only three queries, which
are all fully resolved when B “ 200000, but with no further
strong updates being observed.

For programs like bison, bash and emacs, quite a few
strong updates take place when B ą 1000. There are
two main reasons. First, these programs have many in-
direct callsites (with 293 in bison, 126 in bash and 446
in emacs), making their on-the-fly call graph construction
costly (Section 4.1.2). Second, there are many value-flow
cycles (with over 50% def-use chains occurring in cycles in
bison), making their constraint resolution costly (to reach a
fixed point). Therefore, relatively large budgets are needed
to enable more strong updates to be performed.

Interestingly, in programs such as a2ps and vim, fewer
strong updates are observed when larger budgets are used.
In vim, the number of strong updates performed is 1492
when B “ 2000 but drops to 1204 when B “ 4000. This
is due to the forward reuse described in Section 4.3. When
answering a query ptpx`, vyq under two budgets B1 and B2,
where B1 ă B2, Supa-FS has reached x`1, v1y and needs to
compute ptpx`1, v1yq in each case. Supa-FS may fall back to
the flow-insensitive points-to set of v1 under B1 but not B2,
resulting in more strong updates performed under B1 in the
part of the program that is not explored under B2.

5.4.2 Evaluating Supa-FSCS

For C programs, flow-sensitivity is regarded as being

Table 3: Average analysis times and UAO’s reported
by Supa-FSCS (with a budget of 10000 in each stage)
and Supa-FS (with a budget of 10000 in total)

Program
Supa-FS Supa-FSCS

Time (ms) #UAO Time (ms) #UAO
milc 0.02 3 14.52 0
less 15.15 37 92.41 37
hmmer 11.41 86 135.05 71
make 124.40 26 229.44 26
a2ps 126.01 34 448.26 32
bison 465.54 94 529.20 86
grep 124.46 14 197.66 14
tar 26.31 70 83.10 68
bash 188.69 17 327.16 17
sendmail 200.32 94 250.19 85
vim 168.67 218 473.25 218
emacs 159.22 45 222.65 45

important for achieving useful high precision. However,
context-sensitivity can be important for some C programs.
Unfortunately, whole-program analysis does not scale well
to large programs when both are considered (Section 5.1).

In this section, we demonstrate that Supa can exploit
both flow- and context-sensitivity effectively on-demand in a
hybrid multi-stage analysis framework, providing improved
precision needed by some programs. Table 3 compares
Supa-FSCS (with a budget of 20000 divided evenly in its
FSCS and FS stages) with Supa-FS (with a budget of 10000
in its single FS stage). The maximal depth of a context
stack allowed is 3. By allocating the budgets this way, we
can investigate some additional precision benefits achieved
by considering both flow- and context-sensitivity.

In general, Supa-FSCS has longer query response times
than Supa-FS due to the larger budgets used in our set-
ting and the times taken in handling context-sensitivity. In
milc, hmmer, a2ps, bison, tar and sendmail, Supa-
FSCS reports fewer UAO’s than Supa-FS, for two reasons.
First, Supa-FSCS can perform strong updates context-
sensitively, resulting in 0 UAO’s reported by Supa-FSCS
for milc. Second, Supa-FSCS can perform strong updates
to context-sensitive singleton heap objects defined in Sec-

469

tion 4.2, by eliminating eight UAO’s in bison, 1 in tar and
1 in sendmail, which have been reported by Supa-FS.

6. RELATED WORK
Demand-driven and whole-program approaches represent

two important solutions to long-standing pointer analysis
problems. While a whole-program pointer analysis aims to
resolve all the pointers in the program, a demand-driven
pointer analysis is designed to resolve only a (typically small)
subset of the set of these pointers in a client-specific man-
ner. This work is not concerned with developing an ultra-
fast whole-program pointer analysis. Rather, our objective
is to design a staged demand-driven strong update analy-
sis framework that facilitates efficiency and precision trade-
offs flow- and context-sensitively according to the needs of
a client (e.g., user-specified budgets). Below we limit our
discussion to the work that is most relevant to Supa.

6.1 Flow-Sensitive Pointer Analysis
Strong updates require pointers to be analyzed flow-

sensitively with respect to program execution order. Whole-
program flow-sensitive pointer analysis has been studied
extensively in the literature. Earlier, Choi et al. [6] and
Emami et al. [10] gave some formulations in an iterative
data-flow framework [18]. Wilson and Lam [55] considered
both flow- and context-sensitivity by representing procedure
summaries with partial transfer functions, but restricted
strong updates to top-level variables only. To eliminate un-
necessary propagation of points-to information during the
iterative data-flow analysis [14, 15, 20, 35, 60], some form
of sparsity has been exploited. The sparse value-flows, i.e.,
def-use chains in a program are captured by sparse evalua-
tion graphs [7, 39] as in [17] and various SSA representations
such as HSSA [8] and partial SSA [22]. The def-use chains
for top-level pointers, once put in SSA, can be explicitly
and precisely identified, giving rise to a so-called semi-sparse
flow-sensitive analysis [14]. Recently, the idea of staged anal-
ysis [12, 15] that uses pre-computed points-to information to
bootstrap a later more precise analysis has been leveraged
to make pointer analysis full-sparse for both top-level and
address-taken variables [15, 35, 48, 52, 59, 60]. This paper
is the first to exploit sparsity to improve the performance of
a demand-driven strong update analysis.

There are several parallel implementations of Ander-
sen’s flow-insensitive algorithm on multicore CPUs [31, 37],
GPUs [30], and heterogeneous CPU-GPU systems [46], with
no strong updates performed. However, a flow-sensitive par-
allel implementation of Andersen’s algorithm that supports
strong updates on multi-core CPUs also exists [34].

6.2 Demand-Driven Pointer Analysis
All the existing demand-driven pointer analyses for C [16,

64, 61] and Java [29, 41, 57, 44, 47] are flow-insensitive, for-
mulated in terms of CFL (Context-Free-Language) reacha-
bility [40]. Heintze and Tardieu [16] introduced the first on-
demand Andersen-style pointer analysis for C. Later, Zheng
and Rugina [64] performed alias analysis for C in terms of
CFL-reachability flow- and context-insensitively with indi-
rect function calls handled conservatively. Sridharan et al.
gave two CFL-reachability-based formulations for Java, ini-
tially without considering context-sensitivity [45] and later
with context-sensitivity [45, 44]. Shang et al. [41] and Yan et
al. [57] investigated how to summarize points-to information

discovered during the CFL-reachability analysis to improve
performance for Java programs. Lu et al. [29] introduced an
incremental pointer analysis with a CFL-reachability formu-
lation for Java. Su et al. [47] demonstrated that the CFL-
reachability formulation is highly amenable to parallelisation
on multi-core CPUs. Recently, Feng et al. [11] focused on
answering demand queries for Java programs in a context-
sensitive analysis framework (without strong updates). Un-
like these flow-insensitive analyses, which are not effective
for many clients like Uninit, Supa can perform strong up-
dates on-demand flow and context-sensitively.
Boomerang [43], a very recent IFDS-based flow- and

context-sensitive pointer analysis for Java, also demon-
strates the importance of demand-driven pointer analysis
for security clients, such as FlowDroid [4].

6.3 Hybrid Pointer Analysis
The basic idea is to find a right balance between effi-

ciency and precision. For C programs, the one-level ap-
proach [9] achieves a precision between Steensgaard’s and
Andersen’s analyses by applying a unification process to
address-taken variables only. In the case of Java programs,
context-sensitivity can be made more effective by consider-
ing both call-site-sensitivity and object-sensitivity together
than either alone [19]. In [13], how to adjust the analysis
precision according to a client’s needs is discussed. Zhang
et al. [62] focus on finding effective abstractions for whole-
program analyses written in Datalog via abstraction refine-
ment. Lhoták and Chung [23] trades precision for efficiency
by performing strong updates only on flow-sensitive single-
ton objects but falls back to the flow-insensitive points-to
information otherwise. In this paper, we propose to carry
out our on-demand strong update analysis in a hybrid multi-
stage analysis framework. Unlike [23], Supa is capable of
achieving the same precision as whole-program flow-sensitive
analysis, subject to a given budget.

7. CONCLUSION
We have introduced, Supa, an on-demand strong update

analysis that enables computing precise points-to informa-
tion for C programs flow- and context-sensitively by refining
away imprecisely pre-computed value-flows, subject to some
analysis budgets. Supa handles large C programs effectively
by allowing pointer analyses with different efficiency and
precision tradeoffs to be applied in a hybrid multi-stage anal-
ysis framework. Supa is particularly suitable for environ-
ments with small time and memory budgets such as IDEs.
We have evaluated Supa by choosing uninitialized pointer
detection as a major client on 12 C programs. Supa can
achieve nearly the same precision as whole-program flow-
sensitive analysis under small budgets.

One interesting future work is to investigate how to allo-
cate budgets in Supa to its stages to improve the precision
achieved in answering some time-consuming queries for a
particular client. Another direction is to add more stages to
its analysis, by considering, for example, path correlations.

8. ACKNOWLEDGEMENTS
We thank all the reviewers for their constructive com-

ments on an earlier version of this paper. This research
has been supported by ARC grants, DP130101970 and
DP150101970.

470

9. ARTIFACT DESCRIPTION

9.1 Artifact Package
You can find this package, together with instructions,

on how to use Supa at http://www.cse.unsw.edu.au/˜corg/
supa.

A brief checklist:.

‚ index.html: the detailed instructions for reproduc-
ing the experimental results in the paper.

‚ SUPA.ova: a virtual image file („5GB) contain-
ing installed Ubuntu OS and Supa project (http://
corg-pluto.cse.unsw.edu.au/supa/SUPA.ova).

‚ Supa implementation developed on top of the SVF
framework: http://unsw-corg.github.io/SVF.

‚ Scripts for reproducing all the data in the paper, in-
cluding:

– ./run.sh,

– ./figure_9.sh.

– ./figure_10.sh,

– ./figure_11.sh,

– ./table_2.sh,

– ./table_3.sh.

‚ Micro-benchmarks to validate pointer analysis results.

Platform:.
All the results related to analysis times and memory usage

in our paper are obtained on a 3.7G Hz Intel Xeon 8-core
CPU with 64 GB memory. The OS in the virtual machine
image is Ubuntu 12.04. A user account has been created
with both its username and password as “pta”.

To run SUPA, you are advised to allocate at least 16GB
memory to the virtual machine. The whole-program sparse
flow analysis, denoted SFS in the paper, requires more mem-
ory, as a lower memory budget may force OS to kill the
running process when it is used to analyze some large pro-
grams, e.g., vim, gdb and emacs. Finally, a VirtualBox
with version 4.1.12 or newer is required to run the image.

License:.
GPLv3 (www.gnu.org/licenses/gpl-3.0.en.html)

9.2 Quick Guidelines
To run the experiments as we did for in our paper, open

a terminal and do:

‚ cd /home/pta/pta/ # Go to the SUPA project direc-
tory, denoted as $SUPAHOME

‚ . ./setup.sh # Set up environment variables (please
note that there is a white space between the two dots)

‚ cd SUPA-exp # Go to the experiment directory

To run the three analyses for all 12 benchmarks, execute
the following scripts:

‚ ./run.sh DFS # Run SUPA-FS

‚ ./run.sh CXT # Run SUPA-FSCS

‚ ./run.sh SFS # Run whole-program SFS

On our platform, obtaining the results for SUPA may take
about 30 mins with a budget of 1000, and obtaining the
results for SFS may take more than five hours (especially
for large programs, such as bash, vim and emacs).

Initially, the users are advised to analyze a few bench-
marks with small budgets using the default configuration
files ‘budget’ and ‘benchmarks’. To analyze all the bench-
marks, please use another configuration file containing all
the benchmarks (and remember to re-run everything if the
configuration files have been changed):

After all the analyses are complete, you can collect the
data included in our tables and figures using the following
scripts in the same folder:

‚ ./figure_9.sh # Data in Figure 9

‚ ./figure_10.sh # Data in Figure 10

‚ ./figure_11.sh # Data in Figure 11

‚ ./table_2.sh # Data in Table 2

‚ ./table_3.sh # Data in Table 3

For comparison purposes, we have also provided
the experimental data presented in the paper under
“$SUPAHOME/SUPA-exp/supa-fse/”.

To reproduce the results shown in tables and figures with
the provided data, issue the following commands:

‚ ./figure_9.sh supa-fse # Data in Figure 9

‚ ./figure_10.sh supa-fse # Data in Figure 10

‚ ./figure_11.sh supa-fse # Data in Figure 11

‚ ./table_2.sh supa-fse # Data in Table 2

‚ ./table_3.sh supa-fse # Data in Table 3

9.3 More Experiments and Developer Guide
Please refer to

‚ The website of Supa (http://www.cse.unsw.edu.au/
˜corg/supa)

‚ The Wiki site of our SVF framework (http://
unsw-corg.github.io/SVF).

10. REFERENCES
[1] SUPA. http://www.cse.unsw.edu.au/˜corg/supa.

[2] M. Acharya and B. Robinson. Practical change impact
analysis based on static program slicing for industrial
software systems. In ICSE ’11, pages 746–755, 2011.

[3] L. Andersen. Program analysis and specialization for
the C programming language. PhD thesis, DIKU,
University of Copenhagen, 1994.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
PLDI ’14, pages 259–269, 2014.

471

http://www.cse.unsw.edu.au/~corg/supa
http://www.cse.unsw.edu.au/~corg/supa
http://corg-pluto.cse.unsw.edu.au/supa/SUPA.ova
http://corg-pluto.cse.unsw.edu.au/supa/SUPA.ova
http://unsw-corg.github.io/SVF
www.gnu.org/licenses/gpl-3.0.en.html
http://www.cse.unsw.edu.au/~corg/supa
http://www.cse.unsw.edu.au/~corg/supa
http://unsw-corg.github.io/SVF
http://unsw-corg.github.io/SVF
http://www.cse.unsw.edu.au/~corg/supa

[5] S. Blackshear, B.-Y. E. Chang, and M. Sridharan.
Thresher: Precise refutations for heap reachability. In
PLDI ’13, pages 275–286, 2013.

[6] J.-D. Choi, M. Burke, and P. Carini. Efficient
flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In POPL ’93,
pages 232–245, 1993.

[7] J.-D. Choi, R. Cytron, and J. Ferrante. Automatic
construction of sparse data flow evaluation graphs. In
POPL ’91, pages 55–66, 1991.

[8] F. Chow, S. Chan, S. Liu, R. Lo, and M. Streich.
Effective representation of aliases and indirect memory
operations in SSA form. In CC ’96, pages 253–267,
1996.

[9] M. Das. Unification-based pointer analysis with
directional assignments. In PLDI ’00, pages 35–46,
2000.

[10] R. Emami, M. Ghiya and J. Hendren.
Context-sensitive interprocedural points-to analysis in
presence of function pointers. In PLDI ’94, pages
242–256, 1994.

[11] Y. Feng, X. Wang, I. Dillig, and C. Lin. EXPLORER:
query- and demand-driven exploration of
interprocedural control flow properties. In OOPSLA
’15, pages 520–534, 2015.

[12] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and
E. Geay. Effective typestate verification in the
presence of aliasing. ACM TOSEM, 17(2):9, 2008.

[13] S. Z. Guyer and C. Lin. Client-driven pointer analysis.
In SAS ’03, pages 1073–1073, 2003.

[14] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive
pointer analysis. In POPL ’09, pages 226–238, 2009.

[15] B. Hardekopf and C. Lin. Flow-Sensitive Pointer
Analysis for Millions of Lines of Code. In CGO ’11,
pages 289–298, 2011.

[16] N. Heintze and O. Tardieu. Demand-driven pointer
analysis. In PLDI ’01, pages 24–34, 2001.

[17] M. Hind and A. Pioli. Assessing the effects of
flow-sensitivity on pointer alias analyses. In SAS ’98,
pages 57–81. 1998.

[18] J. B. Kam and J. D. Ullman. Monotone data flow
analysis frameworks. Acta Informatica, 7(3):305–317,
1977.

[19] G. Kastrinis and Y. Smaragdakis. Hybrid
context-sensitivity for points-to analysis. In PLDI ’13,
pages 423–434, 2013.

[20] U. P. Khedker, A. Mycroft, and P. S. Rawat.
Liveness-based pointer analysis. In SAS ’12, pages
265–282. 2012.

[21] W. Landi. Undecidability of static analysis. ACM
Letters on Programming Languages and Systems
(LOPLAS), 1(4):323–337, 1992.

[22] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In CGO ’04, pages 75–86, 2004.

[23] O. Lhoták and K.-C. A. Chung. Points-to analysis
with efficient strong updates. In POPL ’11, pages
3–16, 2011.

[24] O. Lhoták and L. Hendren. Scaling Java points-to
analysis using Spark. CC ’03, pages 153 – 169.

[25] L. Li, C. Cifuentes, and N. Keynes. Boosting the
performance of flow-sensitive points-to analysis using

value flow. In FSE ’11, pages 343–353, 2011.

[26] Y. Li, T. Tan, Y. Sui, and J. Xue. Self-inferencing
reflection resolution for Java. In ECOOP ’14, pages
27–53.

[27] Y. Li, T. Tan, and J. Xue. Effective soundness-guided
reflection analysis. In SAS ’15, pages 162–180.

[28] Y. Li, T. Tan, Y. Zhang, and J. Xue. Program
Tailoring: Slicing by Sequential Criteria. In ECOOP
’16, pages 15:1–15:27, 2016.

[29] Y. Lu, L. Shang, X. Xie, and J. Xue. An incremental
points-to analysis with CFL-reachability. In CC’13,
2013.

[30] M. Méndez-Lojo, M. Burtscher, and K. Pingali. A
GPU implementation of inclusion-based points-to
analysis. In PPoPP ’12, pages 107–116, 2012.

[31] M. Méndez-Lojo, A. Mathew, and K. Pingali. Parallel
inclusion-based points-to analysis. In OOPSLA ’10,
pages 428–443, 2010.

[32] A. Milanova, A. Rountev, and B. G. Ryder.
Parameterized object sensitivity for points-to and
side-effect analyses for java. ISSTA ’02.

[33] A. Milanova, A. Rountev, and B. G. Ryder.
Parameterized object sensitivity for points-to analysis
for Java. ACM Trans. Softw. Eng. Methodol.,
14(1):1–41, 2005.

[34] V. Nagaraj and R. Govindarajan. Parallel
flow-sensitive pointer analysis by graph-rewriting. In
PACT ’13, pages 19–28, 2013.

[35] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design
and implementation of sparse global analyses for
C-like languages. In PLDI ’12, pages 229–238, 2012.

[36] D. Pearce, P. Kelly, and C. Hankin. Efficient
field-sensitive pointer analysis of C. ACM TOPLAS,
30(1):4–es, 2007.

[37] S. Putta and R. Nasre. Parallel replication-based
points-to analysis. In CC ’12, pages 61–80, 2012.

[38] G. Ramalingam. The undecidability of aliasing. ACM
TOPLAS, 16(5):1467–1471, 1994.

[39] G. Ramalingam. On sparse evaluation representations.
Theoretical Computer Science, 277(1):119–147, 2002.

[40] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In POPL ’95, pages 49–61, 1995.

[41] L. Shang, X. Xie, and J. Xue. On-demand dynamic
summary-based points-to analysis. In CGO ’12, pages
264–274, 2012.

[42] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick
your contexts well: understanding object-sensitivity.
In POPL’11, pages 17–30, 2011.

[43] J. Späth, L. N. Q. Do, K. Ali, and E. Bodden.
Boomerang: Demand-driven flow-and context-sensitive
pointer analysis for java. ECOOP, 2016.

[44] M. Sridharan and R. Bod́ık. Refinement-based
context-sensitive points-to analysis for java. PLDI ’06,
pages 387–400, 2006.

[45] M. Sridharan, D. Gopan, L. Shan, and R. Bod́ık.
Demand-driven points-to analysis for java. In
OOPSLA ’05, pages 59–76, 2005.

[46] Y. Su, D. Ye, and J. Xue. Accelerating inclusion-based
pointer analysis on heterogeneous CPU-GPU systems.
In HiPC ’13, pages 149–158, 2013.

472

[47] Y. Su, D. Ye, and J. Xue. Parallel pointer analysis
with cfl-reachability. In ICPP ’14, pages 451–460, Sept
2014.

[48] Y. Sui, P. Di, and J. Xue. Sparse flow-sensitive pointer
analysis for multithreaded programs. In CGO ’16,
pages 160–170. ACM, 2016.

[49] Y. Sui and J. Xue. SVF: Interprocedural static
value-flow analysis in LLVM. In CC ’16, pages
265–266, 2016.

[50] Y. Sui, D. Ye, and J. Xue. Static memory leak
detection using full-sparse value-flow analysis. In
ISSTA ’12, pages 254–264, 2012.

[51] Y. Sui, D. Ye, and J. Xue. Detecting memory leaks
statically with full-sparse value-flow analysis. TSE ’14,
40(2):107–122, 2014.

[52] Y. Sui, S. Ye, J. Xue, and P. Yew. SPAS: Scalable
path-sensitive pointer analysis on full-sparse SSA. In
APLAS ’11, pages 155–171, 2011.

[53] Q. Sun, J. Zhao, and Y. Chen. Probabilistic points-to
analysis for java. In CC ’11, pages 62–81, 2011.

[54] T. Tan, Y. Li, and J. Xue. Making k-object-sensitive
pointer analysis more precise with still k-limiting. In
SAS ’16. 2016.

[55] R. Wilson and M. Lam. Efficient context-sensitive
pointer analysis for C programs. PLDI ’95, pages
1–12, 1995.

[56] X. Xiao and C. Zhang. Geometric encoding: forging
the high performance context sensitive points-to

analysis for Java. In ISSTA ’11, pages 188–198, 2011.

[57] D. Yan, G. Xu, and A. Rountev. Demand-driven
context-sensitive alias analysis for Java. In ISSTA ’11,
pages 155–165, 2011.

[58] D. Ye, Y. Sui, and J. Xue. Accelerating dynamic
detection of uses of undefined variables with static
value-flow analysis. In CGO ’14, 2014.

[59] S. Ye, Y. Sui, and J. Xue. Region-based selective
flow-sensitive pointer analysis. In SAS ’14, pages
319–336. 2014.

[60] H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang. Level
by level: making flow-and context-sensitive pointer
analysis scalable for millions of lines of code. In CGO
’10, pages 218–229, 2010.

[61] Q. Zhang, X. Xiao, C. Zhang, H. Yuan, and Z. Su.
Efficient subcubic alias analysis for C. In PLDI ’14,
pages 829–845, 2014.

[62] X. Zhang, R. Mangal, R. Grigore, M. Naik, and
H. Yang. On abstraction refinement for program
analyses in Datalog. In PLDI ’14, pages 239–248,
2014.

[63] J. Zhao, S. Nagarakatte, M. M. Martin, and
S. Zdancewic. Formalizing the LLVM intermediate
representation for verified program transformations. In
POPL ’12, pages 427–440, 2012.

[64] X. Zheng and R. Rugina. Demand-driven alias
analysis for C. In POPL ’08, pages 197–208, 2008.

473

	INTRODUCTION
	BACKGROUND
	Partial SSA Form
	Sparse Value-Flow Graph

	A MOTIVATING EXAMPLE
	DEMAND-DRIVEN STRONG UPDATES
	Formalism: Flow-Sensitivity
	Handling Value-Flow Cycles
	Call Graph Refinement
	Properties

	Formalism: Flow- and Context-Sensitivity
	SUPA: Hybrid Multi-Stage Analysis

	EVALUATION
	Implementation
	Methodology
	Experimental Setup
	Results and Analysis
	Evaluating Supa-FS
	Evaluating Supa-FSCS

	RELATED WORK
	Flow-Sensitive Pointer Analysis
	Demand-Driven Pointer Analysis
	Hybrid Pointer Analysis

	Conclusion
	Acknowledgements
	ARTIFACT DESCRIPTION
	Artifact Package
	Quick Guidelines
	More Experiments and Developer Guide

	References

