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ABSTRACT
Context: Many software systems are highly configurable. Different
configuration options could lead to varying performances of the
system. It is difficult to measure system performance in the presence
of an exponential number of possible combinations of these options.
Goal: Predicting software performance by using a small configura-
tion sample.
Method: This paper proposes PERF-AL to address this problem via
adversarial learning. Specifically, we use a generative network com-
bined with several different regularization techniques (L1 regulariza-
tion, L2 regularization and a dropout technique) to output predicted
values as close to the ground truth labels as possible. With the use of
adversarial learning, our network identifies and distinguishes the pre-
dicted values of the generator network from the ground truth value
distribution. The generator and the discriminator compete with each
other by refining the prediction model iteratively until its predicted
values converge towards the ground truth distribution.
Results: We argue that (i) the proposed method can achieve the same
level of prediction accuracy, but with a smaller number of training
samples. (ii) Our proposed model using seven real-world datasets
show that our approach outperforms the state-of-the-art methods.
This help to further promote software configurable performance.
Conclusion: Experimental results on seven public real-world datasets
demonstrate that PERF-AL outperforms state-of-the-art software
performance prediction methods.

CCS CONCEPTS
• Software and its engineering → Software performance.
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1 INTRODUCTION
Many large and complex software systems, such as DBMS, compil-
ers, and web servers, are highly configurable. They provide many
configuration options for users to select/deselect. User-relevant con-
figuration options are also called features [2], [3], [4], [18] in soft-
ware product line context. Different combinations of configuration
options could lead to different quality attributes. Among these qual-
ity attributes, performance (e.g., response time or throughput) is
one of the most important attributes, because it directly affects user
experience and cost [34].

It is important to find a good configuration to meet a specific
performance requirement. However, highly configurable software
systems usually have a large number of configuration options (e.g.,
a compiler normally has hundreds of optimization options for com-
piling a program), resulting in an exponential number of possible
option combinations. For example, 10 binary options can produce
210 configuration possibilities. For the numeric option inputs, the
configuration settings become even more complicated. It follows
naturally that there is a demand in developing automatic models for
performance prediction.

Existing Efforts and Limitations. Software performance predic-
tion can be treated as a regression problem in machine learning.
Over years, many software performance prediction methods have
been proposed. For example, CART [10] proposes to use the Clas-
sification and Regression Trees (CART) algorithm to model the
correlation between features and performance. Guo et al. [12] and
Westermann et al. [34] use statistical sampling and machine learn-
ing approaches for configurable software performance prediction.

https://doi.org/10.1145/3382494.3410677
https://doi.org/10.1145/3382494.3410677
https://doi.org/10.1145/3382494.3410677
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Figure 1: An overview of our proposed configurable software through adversarial learning.

Siegmund et al. [28] introduce a measurement-based prediction ap-
proach, called SPLConqueror, which aims to learn the influences
of individual configuration options and their interactions from the
differences among the measurements of the samples. However, the
above mentioned approaches usually require a large amount of train-
ing samples [12, 24, 30], and the prediction accuracy relies heavily
on high-quality samples, which are always limited and very costly
to measure and collect.

Insights and Our Solution. The key challenge for achieving more
accurate performance prediction for a large-scale system lies in the
limited size of samples. This paper aims to address this challenge
by using a small set of samples to achieve the comparable level
of prediction accuracy via adversarial learning, a recently emerged
machine learning approach.

Particularly, a new performance prediction approach, PERF-AL,
is proposed for configurable software taking the adversarial learning
idea used in GAN (generative adversarial network) algorithm. We
train (1) a generator network to generate optimal inputs to a software
system (which is actually a nonlinear dynamic system), and (2) a
discriminator network as a critic that checks the optimality of the
performance prediction. The generator and discriminator networks
compete with each other by iteratively refining and adapting the
prediction model, resulting in a better prediction model than those
by other machine learning approaches.

Figure 1 illustrates the framework of our Perf-AL model. It con-
sists of both generator and discriminator networks. The generator
network is a deep neural network, with its first layer taking the in-
put, the last layer generating the output, and the middle layers as
hidden layers connecting the input and output layer. In discriminator
network, the inputs are prediction labels obtained by the generator
network as well as the ground truth, with the sign label 0 or 1 as a
judgment. The discriminator tries to distinguish which inputs from
the mixed data are closer to the ground truth. Through adversarial
competing and adjusting, the distribution is updated to further reg-
ularize the predicted values and real values. The combination of

supervised loss and adversarial loss is then jointly optimized for
performance prediction. Therefore, our proposed approach is able to
train a performance prediction model using the adversarial learning
mechanism with a small sample set. In order to overcome overfitting,
which is often encountered in training with a small size of sam-
ples, various regularization techniques, e.g. L1, L2 regularization,
and dropout technique are integrated into the proposed PERF-AL
network. We summarize our main contributions as follows:

• We propose a novel adversarial model for performance pre-
diction with various regularization techniques.

• Our PERF-AL model can achieve the same level of prediction
accuracy, but with a smaller number of training samples.

• We have validated our proposed model using seven real-world
datasets. The experimental results show that our approach
outperforms the state-of-the-art methods.

Organization. The rest of this paper is organized as follows: Section
2 briefly introduces the background on configurable software, regu-
larization and generative adversarial network. Section 3 shows our
proposed software performance prediction model with deep genera-
tive adversarial network, giving the details in our proposed generator
and discriminator networks. Section 4 shows the evaluation results
and analysis of our framework by comparing with the state-of-the-art
approaches using seven datasets. Section 5 discusses related work
and our paper is concluded in Section 6.

2 PRELIMINARIES
2.1 Problem Formulation
In this section, we first formalize the problem of performance predic-
tion for configurable software as a regression problem. The mapping
from any configuration options of a system with n features to its
performance values can be formalized as:

f (x) = f (x1,x2, ...,xn ) : X→ R. (1)
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Table 1: Example of a configurable software system and its per-
formance values

x1 x2 x3 ... x8 x9 x10 x11 f (x)

0 0 0 ... 1 10 5 12 y1
0 1 0 ... 1 20 1 3 y2
1 0 1 ... 0 12 3 11 y3
1 1 0 ... 1 9 7 12 y4
. . . ... . . . . .
1 0 0 ... 0 55 0 5 ym−1
1 0 0 ... 0 53 3 2 ym

where X is the Cartesian product of the domains of all the configura-
tion options. xi (i = 1, 2, . . . ,n) is the variable that stores the value
of the configuration option ith . It can be either a Boolean value
(indicating whether a configuration option is selected or not) or a
real value in the value range of the configuration option. If X are all
Boolean values, Eq. 1 can be simplified as a Boolean function:

f : {0, 1}n → R (2)

The objective is to predict the software performance value f (x) of
any new configuration vector x given a small sample m: {xi , f (xi )},
i = 1, 2, . . . ,m.

Table 1 gives an example of a software performance function
f (x1, ...,xn ) and its configuration space. This software system has
11 configuration options, in which 8 options take binary values and
3 options take numeric values. Measuring the time performance
of all possible configurations of the system is difficult and costly,
demanding a lot of time and effort. To address this issue, researchers
propose to measure only the performance values of a limited number
of configurations (samples), then build a prediction model from these
training (configurations) data to predict the performance values of
all other possible configurations. The challenge here is to use a small
yet effective sample to predict for all other configurations with high
accuracy.

2.2 Dropout, L1 and L2 Regularization

Figure 2: The method of Dropout.

When building a prediction model, overfitting may happen during
training, especially when the parameters of the model are numerous

and the training sample size is small. Specifically, Overfitting could
lead to small training error but large test error and low prediction
accuracy. In our work, because we expect to use a small quantity of
training data to predict performance values of highly configurable
software systems and at the same time deep neural networks contain
a large number of parameters, overfitting is an important issue to
be solved. To address this issue, we adopt dropout, which was first
introduced by Hinton [14] for neural networks. The key idea is to
randomly drop some units (along with their connections) from the
neural network during training, as illustrated in Figure. 2.

L1 regularization [31] and L2 [23] regularization are other two
widely used techniques for norm in order to create less complex (par-
simonious) models when we have a high population of features in the
datasets. A regression model that uses L1 regularization technique
is labelled Least Absolute Shrinkage and Selection Operator (Lasso)
Regression and model which uses L2 is known as Ridge Regression.
Lasso Regression adds “absolute value of magnitude” of coefficient
as a penalty term to the loss function and Ridge Regression adds
“squared magnitude” of coefficient as the penalty term to the loss
function. Notably, it has been frequently observed that L1 regulariza-
tion can cause many parameters to be equal to zero, which makes the
parameter vector sparse [23]. Nowadays, L1 regularization and L2
regularization are arguably the most popular technique in machine
learning to combat overfitting not only in linear regression but also
in other models, including neural network [7, 32].

2.3 Generative Adversarial Networks
Generative Adversarial Networks (GANs) was first proposed by
Goodfellow [9] and is now widely applied in many areas such as
computer vision and image processing. This is a class of machine
learning systems in which two neural networks contest with each
other in a zero-sum game framework. The generative network learns
to map from a latent space to a data distribution of interest, while
the discriminator network distinguishes candidates produced by the
generator from the true data distribution. The generative network’s
training objective is to increase the error rate of the discriminator
network, i.e., “fool" the discriminator network by producing novel
candidates that the discriminator identifies as not synthesized (are
part of the true data distribution) [9]. Specifically, this framework
includes two models simultaneously trained: a generative model
G that captures the data distribution, and a discriminator model D
that estimates the probability that a sample came from the training
data. Through an adversarial process, we iteratively evaluate the
generative models to determine which one is the best for fitting
real data distribution. The objective function for jointly training the
prediction model from two networks is:

min
θg

max
θd

[Ex∼Pdata logDθd (x) + Ez∼p(z)log(1 − Dθd (Gθg (z)))],

(3)

whereDθd (x) is Discriminator outputting for real data x,Dθd (Gθд (z))

is Discriminator outputting for generated predicted data G(z). In this
joint model:

• Generator network: Try to fool the discriminator by generat-
ing real-looking labels. Specifically, Discriminator (θd ) wants
to maximize the objective such that D(x) is close to 1 (real)
and D(G(z)) is close to 0 (prediction).
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• Discriminator network: Try to distinguish between the real
and predicted label. Specifically, Generator (θд) wants to min-
imize objectives such that D(G(z)) is close to 1 (discriminator
is fooled into thinking generated G(z) is real).

3 A DEEP NEURAL NETWORK VIA
ADVERSARIAL LEARNING FOR
SOFTWARE PERFORMANCE PREDICTION

In this section, we describe in detail the proposed deep neural net-
work and adversarial learning based framework for modeling the
performance of configurable software systems. The framework is
shown in Figure 1, which consists of two major components: the gen-
erative network and the adversarial network (discriminator network).
The generative network outputs the predicted values of function f (x)
and tries to use its value to "fool" the adversarial network, which tries
to distinguish between the predicted and the real labels. Through this
neural network architecture, we can build a software performance
predication model with a small sample but can still achieve a high
prediction accuracy.

3.1 Objective
Denote S = {(xi,yi )|i = 1, ...,m}, where xi ∈ Rn denotes the value
of the configure option. Each of them can be binary {0, 1} or numeric,
yi ∈ R denotes the real value with any configuration options. m is
the number of training samples. The goal is to learn a deep neural
network f : Rn− > R1, which can predict the software performance
value f (x).

3.2 The Design of Generator Network
The generator network is a regression network that is a performance
prediction model consisting of the input of neurons, activation func-
tions, hidden layers and output. The main hyperparameters in gener-
ator network include the depth (the number of hidden layers), the
width (the number of neurons per layer) and activation functions,
which determine the model structure or decide how the network is
trained.

The width and the depth are two key components in the design of a
neural network architecture. Width and depth are both important and
should be carefully tuned together for the best performance of neural
networks [20]. Going deeper will make a network more expressive,
which means it can capture variations of the data better. This is
known to yield expressiveness more efficiently than increasing the
width of hidden layers. Against this, the trade-off for more expres-
siveness is always the increased tendency to overfit the training data,
inferring that more data or additional regularization will be needed.
Hence, the neural network should be formed as deeply as the training
data allows. The depth can be determined by experiments [5].

Activation functions are another really important element for a
deep neural network to learn really complicated and non-linear com-
plex functional mappings between the inputs and response variables.
They introduce non-linear properties to our network. Their main
purpose is to convert an input signal of a node in a deep neural
network to an output signal. That output signal is now used as an
input in the next layer in the network stack.

The architecture of the generator network in Figure 3 for software
performance prediction is as follows:

x1

Output

Dropout/L1 regularization/L2 regularization

L hidden layers, N neural, ReLU activation function

Linear activation 
function

xn

Figure 3: The proposed generator network with dropout or
L1/L2 regularization for configurable software performance
prediction. The inputs of the network are the n configuration
options of the software system and the output of the network is
the performance value.

• The input layer has n neurons, where n is the number of
configuration options of the software system to be predicted.
The output layer has 1 neuron, which outputs the performance
value of the software system.

• There are L hidden layers (L ≥ 2) and ith hidden layer has
Ni number of neurons.

• All the hidden layers use a ReLU activation function while the
output layer uses a linear activation function. Using a linear
output layer is required since the performance prediction is a
regression problem. Meanwhile, the ReLU is chosen as the
activation function of the hidden layers due to its ability to
learn much faster in networks with many layers compared to
other non-linear activation functions[7, 21].

Formally, we build a generative network ŷ = G(x;θG ). The objective
function of the generative network is defined as follows:

J (θG ) = L(θG ) +
λ

M

M∑
i=1

L(ŷi ,yi ), (4)

where

L(θG ) =


0 dropout

| |θG | |1 L1 reдularization

| |θG | |2 L2 reдularization,

(5)

L(ŷ,y) =
1
2
(y − ŷ)2 (6)

λ denotes the weight hyperparameters.

3.3 The Design of Discriminator Network
Inspired by the framework of GANs [9], we explore label de-

pendencies from ground truth labels by adversarial learning. We
introduce a discriminator yD = D(y;θD ) to distinguish the predicted
values from real labels. For the generator network, we keep the super-
vised learning objective. In addition, we want the generative network
to make predictions which "fool" the discriminator, leading to a new
adversarial learning objective. Under these two learning objectives,
the generator network will be expected to output predictions, which
minimize the supervised loss.
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Algorithm 1 Training algorithm of the proposed model

Input:
training sample D = (xi,yi ),
coefficient α , learning rate η1 and η2
the number of steps of updating adversarial network K1, the num-
ber of steps of updating generative networks K2, bitch size l,

Output: the generative network G
Randomly initialize parameters of Model parameters θD and θG ;
for number of training iterations do

for K1 steps do
Sample a mini-batch of l training data xili=1 from {1, ...,m}

Sample a mini-batch of l real labels yi li=1 from {1, ...,m}

Update the adversarial network D by gradient descent θD :=
θD − η1

∂ JD (θD )

∂θD
end for
for K2 steps do

update the adversarial network G by gradient descent θG :=
θG − η2

∂ JG (θG )

∂θG
end for

end for

Specifically, the learning objective of the framework can be writ-
ten as follows:

min
θG

max
θD

1
M

M∑
i=1

[logD(yi) + log(1 − D(G(xi)))]

+ α(
λ

M

M∑
i=1

L(G(xi ),yi ) + L(θG ))

(7)

where α is a weight coefficient between generator and discriminator
networks controlling the proportion of the supervised objective and
its adversarial counterpart. Theoretically, if α = 0, the learning
objective is the same as that of the original GAN. On the contrary,
if α → ∞, the learning objective is equivalent to that of the single-
task network without the assist of a discriminator. λ is the weight
coefficient between loss function and regularization in the generator
network. As part of training the module, we first initialize these
parameters as small random numbers, then conduct model selection
with grid search, by choosing these parameters ranging from {0.01,
0.1, 1, 5, 10} for simplicity.

Similar to the optimization procedure of GAN, the learning ob-
jective in Eq.7 cannot be optimized directly. The discriminator and
the generator network are optimized alternately by fixing their oppo-
nents. According to the suggestion in [8], it is better for generative
network to minimize -log D(G(x)) instead of log(1-D(G(x))) in order
to avoid the flat gradient. Finally, after rewriting the formula, the
learning objectives of the discriminator and the generator networks
are given as follows:

max
θD

1
M

M∑
i=1

[logD(yi) + log(1 − D(G(xi)))] (8)

min
θG

−
1
M

M∑
i=1

[log(D(G(xi)))] + α(
1
M

M∑
i=1

L(G(xi), yi) + L(θG)) (9)

For the generator network, since the predicted value and real value
are both numeric, we use the mean square errors as the loss function
since this is the most frequently used regression loss function in
machine learning. However, as for adversarial network, the predicted
label and ground truth labels are still numeric while the sign labels
we set are binary {0,1}. This allow us to give the additional formula:

LD (ŷ,y) = −ylogŷ − (1 − y)log(1 − ŷ) (10)

where ŷ denotes the numeric of the predicted and ground truth labels,
y denotes binary{0,1} of sign labels. Since y is binary, this formula
just calculates −ylogŷ or −(1 − y)loд(1 − ŷ) with y being 1 or 0
respectively. When y equals 1, the predicted value ŷ is expected to
close to 1 in order to minimize LD loss function. Similarly, when y
equals 0, the predicted value ŷ is expected to close to 0 in order to
minimize LD loss function. Through this formula we defined, the
discriminator network devotes to distinguishing the label from the
predicted and ground truth values.

From this it follows that the adversarial network and generative
network can be rewritten as:

JD (θD ) =
1
M

M∑
i=1

[LD (D(yi ), 1) + LD (D(G(xi)), 0)]

=
1
M

M∑
i=1

−logD(yi) − log(1 − D(G(xi)))

(11)

JG (θG ) = α(
1
M

M∑
i=1

L(G(xi ),yi ) + L(θG )) +
1
M

M∑
i=1

LD (D(G(xi)), 1)

= α(
1
M

M∑
i=1

(G(xi − yi ))
2 + L(θG )) −

1
M

M∑
i=1

logD(G(xi))

(12)

We apply the alternate optimization steps to train model parameters.
The learning procedure of our method is shown in Algorithm 1.

3.4 Trade-off through Regularization
In a configurable software system, the combination of configurations
could be exponential, which means that there is an infinite num-
ber of parameters and samples. It is easy to overfit the network if
exhaustively deploying and measuring system performance under
all possible configurations. In order to solve the overfitting prob-
lem, we introduce additional information to the network by using
three suitable regularization techniques, i.e. L1 regularization, L2
regularization and dropout technique.

1) L1 regularization of the network. It is known that even though
the possible number of interactions among configuration options
is exponential, a very large portion of potential interactions has no
influence on the performance of software systems [16]. This means
that only a small number of parameters have significant impact on the
model. In other words, the parameters of the neural network could be
sparse. L1 regularization implements feature selection by assigning
insignificant input features with zero weight and useful features with
a non zero weight. Hence, we can use L1 regularization to satisfy
this condition. As show in Eq. 6, the idea of L1 regularization is to
add every hidden layer on the parameters.
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2) L2 regularization of the network. Although L2 regularization
cannot produce sparsely, it forces the weights to be small. L2 regu-
larization can judge whether the different features have the different
impact on output through allocating different weights to every fea-
ture. It is arguably the most popular technique in machine learning
used to combat overfitting. In our model, we use L2 regularization
in every hidden layer of the parameters. The formula is given in Eq.
6.

3) Dropout technique of the network. The deep neural network of
software systems with a large number of parameters is indeed a high
computational program, resulting in serious overfitting problems.
Dropout is also a technique for addressing this problem. It randomly
drops units (along with their connections) from the neural network
during training. This prevents units from co-adapting too much.
During training, dropout samples from an exponential number of
different “thinned” networks. At test time, it is easy to approximate
the effect of averaging the predictions of all these thinned networks
simply by using a single unthinned network that has smaller weights.
This significantly reduces overfitting and gives major improvements
over other regularization methods [29]. With this benefit, we apply
dropout technique in every hidden layer.

After we apply these three regularization techniques and conduct
experiments, we select the best regularization technique in our net-
work. According to our experiments (described in Section 4.6), the
L2 regularization performs best among these three regularization
techniques. Therefore we choose L2 regularization in our PERF-AL
network.

4 EXPERIMENTS AND ANALYSIS
To evaluate our proposed approach, we conduct experiments to
answer the following research questions:

• RQ1: Does our proposed approach improve performance in
the prediction of configurable software systems with binary
options when compared with state-of-the-art approaches?

• RQ2: Does our proposed approach improve the performance
prediction of configurable software systems with binary and
numeric options when compared with state-of-the-art ap-
proaches?

• RQ3: What contribution does the adversarial component hold
for our proposed model? Specifically, what about the predic-
tion accuracy of deep networks with and without adversarial
learning?

• RQ4: What kind of regularization should be used to achieve
the best performance?

We ask RQ1 and RQ2 to evaluate the effectiveness of our PERF-
AL model on binary and binary-numeric configurable software sys-
tems and compare it with some state-of-the-art baselines. RQ3 aims
to evaluate the contribution of the adversarial component in our
model. We ask RQ4 to compare the regularization techniques in
deep adversarial network.

4.1 Data Preparation
In evaluating the prediction accuracy of our proposed method, we
use four datasets with binary configuration options and three with
both binary and numeric configuration options. These seven datasets
are different real-world configurable software systems. They have

Table 2: The subject software systems. #Binary is the number
of binary configuration options; #Numeric is the number of nu-
meric configuration options; #Configs is the number of valid
configurations

System Domain #Binary #Numeric #Configs
Apache Web server 9 0 192
LLVM Compiler 11 0 1024
BDB-C Database System 18 0 2560
BDB-J Database System 26 0 180

DUNE MGS Multi-Grid solver 8 3 2304
HIPA Image Processing 31 2 13485

HSMGP Stencil-Grid Solver 11 3 3456

different sizes (between 45000 and 300000+ lines of code) and are
written in various languages, e.g. Java, C and C++. These systems
also have different characteristics and are from diverse application
domains, e.g. multi-grid solver, web sever, video encoder, database
library, database management system, compiler, etc. The number of
configuration options ranges from 8 to 39 while the number of valid
configurations ranges from 180 to 13485. These software systems
were measured and published online [1]. More details about them
can be found in [27, 28]. Table 2 gives the overview of these seven
subject systems.

4.2 Evaluation Metrics
Mean Relative Error (MRE), Mean Square Error (MSE) and Spear-
man correlation are used to evaluate the prediction accuracy of the
proposed method, as they are widely used evaluation metrics in the
area of prediction models [6, 12, 17, 27]. MRE is computed as,

MRE =
1
|C |

∑
c ∈V

|predictedc − actualc |

actualc
, (13)

where V is the testing dataset, predictedc is the predicted perfor-
mance value of configuration c. actualc is the actual performance
value of configuration c. MSE is computed as,

MSE =
1
|C |

∑
c ∈V

(predictedc − actualc )
2, (14)

Spearman correlation is computed as,

R =

∑
(predictedc − predictedc )(actualc − actualc )√∑

(predictedc − predictedc )2
∑
(actualc − actualc )2

, (15)

where predictedc and actualc are the mean values of predictedc
and actualc respectively. These three evaluation metrics analyze
the correlation between the predicted values and ground truth from
different aspects. MRE and MSE measure the precision of a set of
predicted values and real values which measure difference between
the predicted values and ground truth. Spearman correlation mea-
sures the strength and direction of association between predicted
values and real values.

4.3 Training Details
In the generator network, the hidden size is set to 3 and the number
of neurons per layer is 512. The mini-batch size is set to 64, while
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the learning rate starts from 0.001 and is divided by 10 when the
performance is predicted on the validation sets. The input is normal-
ized between 0 and 1. We set the last output layer with the linear
activation. Beforehand, we mapped the software performance values
into [0, 1]. In discriminator network, the number of hidden layers is
3 and the number of neurons per layer is 128. The learning rate in the
discriminator network starts from 0.0001 and is divided by 10 when
the performance is predicted on the validation sets. We train the
model using the Adam algorithm [19] as it is a very computationally
efficient method. All the experiments in this paper are implemented
with Python 3.6, and run on a computer with a 2.2GHz Intel Core i7
CPU, 64GB 1600MHz DDR3 RAM, and a Titan X GPU with 12GB
memory, running Red Hat Linux 7.5.

4.4 RQ1: Comparisons on Binary Options
As mentioned in Section I, some existing methods, e.g. SPLC Con-
queror [27, 28], Fourier Learning [38], DECART [12] (the improved
version of CART [10]), and DeepPerf [15] can predict performance
values of software systems with binary options. Among these meth-
ods, DECART and DeepPerf are superior to others and DeepPerf is
the first to be proposed to use deep network to model highly config-
urable software systems. It is natural, therefore, in this experiments,
we will compare our proposed method with DECART and DeepPerf.
We adopt the experiment setup in [12]. Initially, we randomly select
five different sizes from these four subject systems respectively and
their corresponding performance values for the training datasets: n,
2n, 3n, 4n and 5n, where 67% of samples for training and 33% for
validation, n is the number of options of each system, shown in the
column Binary of Table 2. all the remaining measurements are then
used as the testing datasets. To evaluate the consistency and stability
of the approaches, for each sample size of each subject system, we
repeat this random sampling, training and testing process 30 times.
We then report the mean of the MREs obtained after 30 experiments
with PERF-AL, DeepPerf and DECART.

Table 3 shows the experiments results of software performance
prediction on the Apache, LLVM, BDB-C and BDB-J systems.
These four subject systems were also used in [12]. As can be seen,
with the increase of sample size, the accuracy of performance predic-
tion is improved, since under-fitting is resolved with enough training
data. Furthermore, our proposed PERF-AL method outperforms
the DECART and DeepPerf methods. Specifically, on the Apache
dataset, the mean relative error achieved by our method is 0.0744,
0.0657, 0.0583 when the sample size is 3n, 4n, 5n, respectively,
which leads to 0.81%, 0.4%, and 0.46% improvement over DeepPerf
and 3.59%, 2.92%, 2.01% improvement over DECART. On the LLVM
and BDB-J datasets, the improvements in the sample size of 3n, 4n,
5n are 0.17%, 0.22%, 0.35% (DeepPerf), 1.59%, 1.49%, 1.20% (DE-
CART) and 0.09%, 0.06%, 0.02% (DeepPerf), 0.39%, 0.11%, 0.08%
(DECART), respectively. On the BDB-C dataset, DeepPerf achieves
the best performance in 3n size and DECART achieves the best
performance in 5n size. Overall, our PERF-AL model achieves the
best performance on all the datasets.

Compared with DECART, our PERF-AL method needs far less
training data than the former for the same level of accuracy. For
example, on the LLVM dataset, PERF-AL only needs 3n samples

Table 3: Comparisons with baselines on binary configuration
options systems.

Subject
System

Sample
Size

DECART
MRE

DeepPerf
MRE

PERF-AL
MRE

Apache

n
2n
3n
4n
5n

-
0.1583
0.1103
0.0949
0.0784

0.1787
0.1024
0.0825
0.0697
0.0629

0.2416
0.1168
0.0744
0.0657
0.0583

LLVM

n
2n
3n
4n
5n

0.0600
0.0466
0.0396
0.0354
0.0284

0.0509
0.0387
0.0254
0.0227
0.0199

0.0443
0.0313
0.0237
0.0205
0.0164

BDB-C

n
2n
3n
4n
5n

1.5100
0.438
0.3190
0.0693
0.0502

1.3360
0.1677
0.1310
0.0695
0.0582

1.3323
1.3756
0.1409
0.0691
0.0571

BDB-J

n
2n
3n
4n
5n

0.1004
0.0230
0.0203
0.0172
0.0167

0.0725
0.0207
0.0173
0.0167
0.0161

0.0710
0.0514
0.0164
0.0161
0.0159

to achieve a prediction MRE of 0.0237 while DECART needs at
least 5n samples in order to achieve the same prediction MRE. For
DeepPerf, the distribution of the predictions may be far away from
that of ground truth due to the lack of distinction between the pre-
diction and the ground truth. Since our proposed method introduces
a discriminator to distinguish the predicted values from the ground
truth, the generator network tries to "fool" the discriminator network,
which forces the distributions of the prediction and the ground truth
to be closer. Hence, our PERF-AL model is superior to DECART
and DeepPerf.

Table 4: Comparisons with baselines on binary and numeric
configuration options systems.

Subject
System

Sample
Size

SPLConqueror
MRE

DeepPerf
MRE

PERF-AL
MRE

DUNE
MGS

49
78
240
375

0.201
0.221
0.106
0.088

0.1573
0.1367
0.0819
0.0720

0.1451
0.1297
0.0763
0.0649

HIPA

261
528
736
1281

0.142
0.138
0.139
0.139

0.0939
0.0638
0.0506
0.0375

0.0922
0.0621
0.0488
0.0371

HSMGP

77
173
384
480

0.045
0.028
0.022
0.017

0.0676
0.0360
0.0253
0.0224

0.0470
0.0262
0.0215
0.0168
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4.5 RQ2: Compared to Baseline on
Binary-numeric Options

Our next step is to compare our PERF-AL model with SPCLCon-
queror and DeepPerf, which can all predict performance values of
software systems in both binary and numeric options. Three datasets,
DUNE MGS, HIPA and HSMGP, as shown in Table 2 will be used
for comparison. These subjects systems are also used in [28] and [15]
for evaluating SPLConqueror and DeepPerf. We use the same sample
sizes as their values for evaluation. To reduce the fluctuations caused
by randomness, we repeat the random sample, training, validation
and testing process 30 times with each sample size. Then, we report
the mean of MREs. The testing dataset consists of all the remaining
configurations after selecting the training sample.

The experimental results are shown in Table 4. As can be seen,
our proposed PERF-AL method outperforms the SPLConqueror and
DeepPerf methods. For example, for the sample size of 240 and
375, our PERF-AL model achieves a MSE of 0.0763 and 0.0649 on
DUNE MGS dataset, Both better than the results achieved by the
DeepPerf method. This demonstrates that the discriminator plays
an important role in distinguishing the predictions from the ground
truth and enforces the generator network to generate predictions
which are closer to the distribution of the ground truth. Compared
with SPLConqueror, our PERF-AL method outperforms in almost
all cases, which indicates the superiority of using neural network to
predict software performance.

4.6 RQ3: Comparisons with Different
Regularization

In this section, we aim to evaluate how different regularization
methods have different impacts on prediction values in deep neu-
ral networks. After that, we can decide which regularization tech-
niques (L1/L2/Dropout) should be used in the PERF-AL method to
achieve the best performance. For this, we design the following ex-
periments in Apache, LLVM, BDB-C and BDB-J four datasets: deep
generator network with L1 regularization (L1-NN), deep generator
network with L2 regularization (L2-NN), deep generator network
with dropout regularization (dropout-NN), generative adversarial
networks with the best regularization technique (PERF-AL). In
fact, we use L2 regularization in our generative adversarial network
because it can achieve the highest accuracy among the three regular-
ization techniques.

Table 5 shows the prediction MRE, MSE and R in four binary
subject systems with three sample sizes per system. From Table 5,
we observe the following:

First, with a smaller sample size, the prediction results are worse
due to the fact that the network or classifier is prone to overfit on
small training data.

Second, the proposed method using adversarial learning has
achieved the best performance among all methods with the lowest
MSE, lowest MRE, and highest Spearman correlation. Specifically,
compared with deep network without discriminator, the proposed
method achieves the best in LLVM, BDB-C and BDB-J systems with
different sample sizes. In the Apache subject system, the proposed
method also has the best performance with the increase of sample
size. The methods ignoring discriminator network only with differ-
ent regularization totally rely on a loss function between Ground

truth and prediction values. The distributions of the predictions may
be far from that of the ground truth due to the lack of modeling
discriminator network. For our proposed method, since we proposed
a discriminator that can judge the predictions and ground truth, the
process forces the generator network generating prediction values
closer to ground truth.

Third, the deep neural network with L2 regularization has better
performance than deep network with L1 regularization and dropout
regularization. Specifically, in the four subject systems, L2 regu-
larization has the lowest MSE, lowest MRE and highest Spearman
correlation for almost all sample sizes. This demonstrates that L2
regularization is more effective than L1 regularization and dropout
in software performance prediction.

4.7 RQ4: The Effectiveness of PERF-AL
We can compare models with adversarial learning and general neural
network on binary configuration options systems in Table 5. Table
6 gives the experimental results in adversarial learning model and
general neural network with L2 regularization on both binary and
numeric configuration options systems. Since L1 regularization and
dropout techniques are not as effective as the L2 regularization
discussed in Section 4.6, we only list the L2 regularization in Table
6. As we can see, the model with adversarial learning has the lowest
MRE, MSE and highest R compared with model with general neural
network. This demonstrates PERF-AL model has better predictions
than only using neural network with L2 regularization on these three
subject systems, which significantly verifies the superiority of our
PERF-AL model. Actually, in our architecture, we utilize L2-NN
model as our generator network due to its better performance than
L1-NN and dropout-NN and we set parameter θ as the weight of
Generator model and discriminator model shown in Eq. 7. Hence,
our model is impossibly worse than L2-NN.

For our proposed method, since we introduce a discriminator to
distinguish the prediction values from ground truth, the generator
network tries to fool the discriminator, which forces the distributions
of the prediction values and ground truth to be closer. Therefore, our
PERF-AL method achieves better performance.

To further evaluate the effect of the PERF-AL introduced in our
model, we visualize the distributions of the ground truth and pre-
diction values in Figure 4. The distributions of ground truth and
prediction values are considered. We draw the red line as ground
truth values and the blue line as prediction values generated by the
network. The first one is the starting stage of training. The second
one is general deep network without adversarial learning. The last
one is our proposed PERF-AL model. From Figure 4(a), we can
observe that the training does not converge at the early stage, the pre-
diction values are far away from ground truth. Then, we can observe
that the overlapping between prediction values and ground truth in
Figure 4(c) are smaller than Figure 4(b). Furthermore, compared
with Figure 4(b), prediction values in Figure 4(c) display a more
related fluctuation with ground truth. The visualization demonstrates
that our proposed model is more effective.
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Table 5: Comparison among PERF-AL, L1, L2 and Dropout regularization.

Subject
System

Sample
Size

PERF-AL L1-NN L2-NN Dropout-NN
MRE MSE R MRE MSE R MRE MSE R MRE MSE R

Apache
n
3n
5n

0.2416
0.0744
0.0583

0.2667
0.0598
0.0454

0.0730
0.6483
0.7237

0.1516
0.1421
0.1098

0.1454
0.1391
0.1349

0.0200
0.0235
0.0393

0.2101
0.0839
0.0668

0.2102
0.0513
0.0457

0.1989
0.6760
0.6815

0.1636
0.1135
0.0763

0.1406
0.0914
0.0785

0.0579
0.2590
0.5505

LLVM
n
3n
5n

0.0443
0.0237
0.0164

0.0475
0.0347
0.0292

0.4545
0.6782
0.7062

0.0559
0.0331
0.0259

0.0745
0.0726
0.0706

0.1102
0.1177
0.1668

0.0464
0.0275
0.0198

0.0675
0.0610
0.0419

0.4332
0.4640
0.5821

0.0489
0.0388
0.0223

0.2071
0.1353
0.0535

0.2920
0.4033
0.4958

BDB-C
n
3n
5n

1.3323
0.1409
0.0570

0.4083
0.2790
0.0305

0.3707
0.4984
0.8117

2.2341
1.0367
0.2095

0.3512
0.3212
0.2834

0.2272
0.3293
0.4318

1.6516
0.2367
0.0765

0.4595
0.2170
0.1476

0.3708
0.5863
0.7883

2.0808
0.4520
0.1073

0.3735
0.1789
0.0753

0.3010
0.4865
0.6941

BDB-J
n
3n
5n

0.0710
0.0164
0.0159

0.0305
0.0881
0.0132

0.3526
0.5819
0.8211

0.1295
0.1050
0.0740

0.4216
0.3311
0.3234

0.3427
0.4329
0.4620

0.0801
0.0227
0.0164

0.1603
0.1107
0.0246

0.3478
0.4911
0.8055

0.1024
0.0409
0.0240

0.2486
0.1278
0.0312

0.3098
0.5374
0.7686

(a) Performance in early iterations (b) Performance with ordinary deep network (c) Performance with Perf-AL model

Figure 4: An example of software prediction conducted by PERF-AL and ordinary deep network on Apache system. The red line
denotes the ground truth and the blue line denotes the predicted values

Table 6: Comparisons between PERF-AL and L2-NN on both
binary and numeric configuration options systems.

Subject
System

Sample
Size

PERF-AL L2-NN
MRE MSE R MRE MSE R

DUNE
MGS

49
78

240
375

0.1451
0.1297
0.0763
0.0649

0.0090
0.0071
0.0040
0.0028

0.5006
0.6410
0.7704
0.8002

0.1573
0.1540
0.0957
0.0802

0.0106
0.0094
0.0084
0.0114

0.4778
0.6025
0.7024
0.7877

HIPA

261
528
736

1281

0.0922
0.0621
0.0488
0.0371

0.0641
0.0449
0.0394
0.0128

0.5766
0.6215
0.6885
0.7352

0.1028
0.0872
0.0678
0.0466

0.0877
0.0610
0.0467
0.0380

0.5129
0.5822
0.6215
0.7268

HSMGP

77
173
384
480

0.0470
0.0262
0.0215
0.0168

0.0206
0.0115
0.0028
0.0006

0.6637
0.7403
0.8862
0.9300

0.0662
0.0288
0.0249
0.0180

0.0305
0.0130
0.0055
0.0008

0.6124
0.7363
0.8442
0.9262

4.8 Limitations and Threats to Validity
One limitation of our approach is that it is more time consuming than
DECART and SPLConqueror methods. In our machine configura-
tion, for binary subject systems, the time of model training increases
from 40 seconds to 300 seconds when the sample size increases from
n to 5n on Apache, LLVM, BDB-c and BDB-J datasets. For binary-
numeric subject systems, the time of model training increases from 2
minutes to 8 minutes from the small sample size to the large sample

size on DUNE MGS, HIPA and HSMGP datasets. Meanwhile, the
time consumption of DECART and SPLConqueror method is from
a few seconds to 2 minutes in these subject systems. Although our
method takes longer to build the training model than DECART and
SPLConqueror, the time cost of our model is still acceptable since
our model can achieve higher accuracy.

One threat to validity is that there are many model parameters in
our network, including the depth and width of this network, neurons
and weight of trainable parameters, learning rate, weight decay etc.
Training a huge number of parameters may cost a lot of computation
time and memory. Besides, it is difficult to find the optimal solution
with all the best model parameters. In our future work, we plan
to propose an advanced parameter search strategy for improving
convergence rate.

5 RELATED WORK
5.1 Software Performance Prediction
There has been much work focusing on selecting a rational size
of sample configurations for performance prediction. For example,
Sayyad et al. [25] employed a combination of static and evolution-
ary learning of model structure. They also utilized a pre-computed
solution used as a “seed” in the midst of a randomly-generated ini-
tial population to help the Indicator-Based Evolutionary Algorithm
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(IBEA) in finding sound and optimum configurations of very large
variability models in the presence of competing objectives. Sarkar
et al. [24] introduced a new heuristic based on feature frequencies
and adapt two widely-used sampling strategies for performance pre-
diction. They also evaluated them in terms of sampling cost with
the consideration of prediction accuracy and measurement effort si-
multaneously. Nair et al. [22] proposed a fast-spectral learner, called
WHAT, along with three new sampling techniques. The key idea
of WHAT is to explore the configuration space with eigenvalues
of the features used in a configuration to determine exactly those
configurations for measurement that reveal key performance charac-
teristics. Compared with their methods, ours focuses on developing
a new learning method to construct software performance models
with higher prediction accuracy and less sample data. In our future
work, we will explore if the above related work could be integrated
into our framework.

Apart from performance prediction, there is also much work
on predicting other quality attributes of configurable software. For
example, Zhang et al. [36] proposed a Bayesian Belief Network
(BBN) based approach to quality prediction and assessment for a
software product line. For developing a specific system, a member
of the product line, they reused the expertise captured by a BBN.
This helps to capture the impact of configuration options on qual-
ity attributes and assess the quality of a product line member by
performing quantitative analysis over it. Their methods are good
for quality attributes that are hard to measure and quantify. Guo et
al. [11] presented a GA-based optimized feature selection approach,
GAFES, for automated product derivation in a software product line.
A key component of GAFES is an algorithm that can transform an
arbitrary feature selection into a valid feature combination, which
can minimize or maximize an objective function, such as total cost,
subject to resource constraints. Our work focuses on performance
prediction and can be extended to other quality attributes in the
future.

5.2 Generative Adversarial Network and its
Applications

The applications of generative adversarial network have been widely
employed in many areas such as computer vision and industrial
design [26][35][33]. There are also some applications of GAN in
software engineering research. For example, Harer et al. [13] applied
an adversarial learning approach to repair software vulnerabilities.
Zhang et al [37] proposed DeepRoad, which applies Generative Ad-
versarial Networks along with the corresponding real-world weather
scenes to produce driving scenarios with various weather condi-
tions (including those with extreme conditions). As an unsupervised
DNN-based framework, their DeepRoad also utilizes metamorphic
testing techniques to check the consistency of systems using syn-
thetic images. In our work, we apply the adversarial learning idea in
GAN to performance prediction for configurable software. We train
a network to generate optimal control inputs to nonlinear dynamic
systems. Where the discriminator network is known as a critic that
checks the optimality of the software prediction and the generative
network is known as an adaptive network that generates the opti-
mal prediction accuracy. The critic and adaptive network train each
other to approximate a nonlinear optimal control, which can achieve

the best performance prediction in software. As far as we know,
this paper is the first to introduce a GAN model into software per-
formance prediction. Our approach achieves higher accuracy with
smaller samples and supports both binary and numeric configuration
options.

6 CONCLUSION
In this paper, we have proposed PERF-AL, an adversarial learning
framework for software performance prediction. A deep neural net-
work is adopted to learn the influence of configuration options on
software performance during training phase. Adversarial learning
is further introduced to capture the correlation between the predic-
tion and ground truth, forcing the distributions of the prediction and
ground truth to be close to each other. PERF-AL is able to work
with both binary and numeric configuration options. Experimental
results on the seven datasets demonstrate that our PERF-AL model
outperforms the state-of-the-art approaches with smaller samples.

For replication purpose, our experimental data and source code
are publicly available at: https://github.com/GANPerf/GANPerf .

In the future, we will design a search mechanism for choosing
the best hyper-parameters of the neural network model to further
optimize the performance of our approach. We will also explore
the synergy between our approach and the related work on sample
selection.
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