
Efficient Neural Network Verification via Order
Leading Exploration of Branch-and-Bound Trees
Guanqin Zhang #

University of New South Wales, Sydney, Australia
CSIRO’s Data61, Sydney, Australia

Kota Fukuda #

Kyushu University, Fukuoka, Japan

Zhenya Zhang #

Kyushu University, Fukuoka, Japan
National Institute of Informatics, Tokyo, Japan

H.M.N. Dilum Bandara #

CSIRO’s Data61, Sydney, Australia
University of New South Wales, Sydney, Australia

Shiping Chen #

CSIRO’s Data61, Sydney, Australia
University of New South Wales, Sydney, Australia

Jianjun Zhao #

Kyushu University, Fukuoka, Japan

Yulei Sui #

University of New South Wales, Sydney, Australia

Abstract
The vulnerability of neural networks to adversarial perturbations has necessitated formal verification
techniques that can rigorously certify the quality of neural networks. As the state-of-the-art, branch-
and-bound (BaB) is a “divide-and-conquer” strategy that applies off-the-shelf verifiers to sub-problems
for which they perform better. While BaB can identify the sub-problems that are necessary to be
split, it explores the space of these sub-problems in a naive “first-come-first-served” manner, thereby
suffering from an issue of inefficiency to reach a verification conclusion. To bridge this gap, we
introduce an order over different sub-problems produced by BaB, concerning with their different
likelihoods of containing counterexamples. Based on this order, we propose a novel verification
framework Oliva that explores the sub-problem space by prioritizing those sub-problems that are
more likely to find counterexamples, in order to efficiently reach the conclusion of the verification.
Even if no counterexample can be found in any sub-problem, it only changes the order of visiting
different sub-problems and so will not lead to a performance degradation. Specifically, Oliva has two
variants, including OlivaGR, a greedy strategy that always prioritizes the sub-problems that are more
likely to find counterexamples, and OlivaSA, a balanced strategy inspired by simulated annealing
that gradually shifts from exploration to exploitation to locate the globally optimal sub-problems.
We experimentally evaluate the performance of Oliva on 690 verification problems spanning over
5 models with datasets MNIST and CIFAR-10. Compared to the state-of-the-art approaches, we
demonstrate the speedup of Oliva for up to 25× in MNIST, and up to 80× in CIFAR-10.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Software and its engineering → Software testing and debugging

Keywords and phrases neural network verification, branch and bound, counterexample potentiality,
simulated annealing, stochastic optimization

Funding Guanqin Zhang: CSIRO’ Data61 PhD Scholarship
Kota Fukuda: JST BOOST Grant No. JPMJBS2406
Zhenya Zhang: JST BOOST Grant No. JPMJBY24D7 and JSPS Grant No. JP25K21179

mailto:Guanqin.zhang@unsw.edu.au
mailto:fukuda.kota.527@s.kyushu-u.ac.jp
mailto:zhang@ait.kyushu-u.ac.jp
mailto:dilum.bandara@data61.csiro.au
mailto:shiping.chen@data61.csiro.au
mailto:zhao@ait.kyushu-u.ac.jp
mailto:y.sui@unsw.edu.au

2 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

Jianjun Zhao: JSPS KAKENHI Grant No. JP23H0337
Yulei Sui: Australian Research Council Grants No. FT220100391 and No. DP250101396.

1 Introduction

The rapid advancement of artificial intelligence (AI) has propelled the state-of-the-art across
various fields, including computer vision, natural language processing, recommendation
systems, etc. Recently, there is also a trend that adopts AI products in safety-critical
systems, such as autonomous driving systems, in which neural networks are used in the
perception module to perceive external environments. In this type of application, unexpected
behaviors of neural networks can bring catastrophic consequences and intolerable social losses;
given that neural networks are notoriously vulnerable to deliberate attacks or environmental
perturbations [28, 18], effective quality assurance techniques are necessary in order to expose
their defects timely before their deployment in the real world.

Formal verification is a rigorous approach that can ensure the quality of target systems by
providing mathematical proofs on conformance of the systems with their desired properties.
In the context of neural networks, formal verification aims to certify that a neural network,
under specific input conditions, will never violate a pre-defined specification regarding its
behavior, such as safety and robustness, thereby providing a rigorous guarantee that the
neural network can function as expected in real-world applications. With the growing
emphasis on AI safety, neural network verification has emerged as a prominent area of
research, leading to the development of innovative methodologies and tools.

As a straightforward approach, exact encoding solves the neural network verification
problem by encoding the inference process and specifications to be logical constraints and
applying off-the-shelf or dedicated solvers, such as MILP solvers [47] and SMT solvers [23],
to solve the problem. However, this approach can be very slow due to the non-linearity of
neural network inferences and so they are not scalable to neural networks of large sizes. In
contrast, approximated methods [44, 41, 49] that over-approximate the reachable region of
neural networks are more efficient: once the over-approximation satisfies the specification, the
original output must also satisfy; however, if the over-approximation violates the specification,
it does not indicate that the original output also violates, and in this case it may raise a
false alarm, i.e., a specification violation that actually does not exist.

To date, Branch-and-Bound (BaB) [5] is the state-of-the-art verification approach that
overarches multiple advanced verification tools, such as αβ-Crown [51] and Marabou [52]. It
is essentially a “divide-and-conquer” strategy, and is often jointly used with off-the-shelf
approximated verifiers due to their great efficiency. Given a verification problem, it first
applies an approximated verifier to the problem, and splits it to sub-problems if the verifier
raises a false alarm, until all the sub-problems are verified or a real counterexample is
detected, as a witness of specification violation. As application of approximated verifiers to
sub-problems leads to less over-approximation, BaB can thus resolve the issue of false alarms
of approximated verifiers and outperform their plain application to the original problem.

Motivations

As a “divide-and-conquer” strategy, BaB can produce a large space that consists of quantities
of sub-problems, especially for verification tasks that are reasonably difficult. However,
when exploring this space, the classic BaB adopts a naive “first come, first served” strategy,
which ignores the importance of different sub-problems and thus is not efficient to reach a
verification conclusion. Notably, different sub-problems produced by BaB are not equally

G. Zhang et al. 3

important—with a part of the sub-problems, it is more likely to find a real counterexample
that can show the violation of the specification, and thereby we can reach a conclusion for
the verification efficiently without going through the remaining sub-problems.

Contributions

In this paper, we propose a novel verification approach Oliva, which is an order leading
intelligent verification technique for artificial neural networks.

We first define an order called counterexample potentiality over the different sub-problems
produced by BaB. Our order estimates how likely a sub-problem is to contain a counterexample,
based on the following two attributes: 1. the level of problem splitting of the sub-problem,
which implies how much approximation the approximated verifier needs to perform. The
less approximation there is, the more likely the verifier can find a real counterexample;
2. a quantity obtained by applying approximated verifiers to the sub-problem, which is an
indicator of the degree to which the neural network satisfies/violates the specification. By
these two attributes, we define the counterexample potentiality order over the sub-problems,
as a proxy to suggest their likelihood of containing counterexamples and serve as guidance
for our verification approach.

Then, we devise our approach Oliva that exploits the order to explore the sub-problem
space. In general, Oliva favors the sub-problems that are more likely to contain counter-
examples. Once it can find a real counterexample, it can immediately terminate the verifica-
tion and return with a verdict that the specification can be violated; even if it cannot find
such a counterexample, after visiting all the sub-problems, it can still manage to certify the
neural network without a significant performance degradation.

To exemplify the power of our order-guided exploration, we propose two variants of Oliva:
OlivaGR employs a greedy exploitation strategy, which always prioritizes the sub-problems
that have a higher likelihood of containing counterexamples. This approach focuses on
the most suspicious regions of the sub-problem space, and is likely to quickly expose the
counterexamples such that the verification can be concluded quickly;
To avoid overfitting of our proposed order, we also devise OlivaSA inspired by simulated
annealing [24], the famous stochastic optimization technique. The approach works
similarly to simulated annealing: it maintains a variable called temperature that keeps
decreasing throughout the process, which can control the trade-off between “exploitation”
and “exploration”. At the initial stage, the temperature is high, and so the algorithm allows
more chances of exploring the sub-problems that are not promising; as the temperature
goes down, it converges to the optimal sub-problem. As the exploration of the search
space has been done at the early stage of the algorithm, it is likely to converge to the
globally optimal sub-problems and thereby find counterexamples. In this way, we mitigate
the potential issue of being too greedy, and aim to strike a balance between “exploitation”
and “exploration” in the search for suspicious sub-problems.

Evaluation

To evaluate the performance of Oliva, we perform a large scale of experiments on 690 problem
instances spanning over 5 neural network models associated with the commonly-used datasets
MNIST and CIFAR-10. By a comparison with the state-of-the-art verification approaches,
we demonstrate the speedup of Oliva, for up to 25× in MNIST, and up to 80× in CIFAR-10.
Moreover, we also show the breakdown results of Oliva for problem instances that are finally
certified and the instances that are finally falsified. Experimental results show that Oliva is

4 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

1.9

-3

1
-2

2

-2

0.6

-3

-1.6

0.5

<latexit sha1_base64="A4pHexuG1nBV+KLVGh5sIafbECs=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx48RDEPzC5hdtJJhszOLjOzQljyF148KOLVv/Hm3zh5HDSxoKGo6qa7K0wE18Z1v53cyura+kZ+s7C1vbO7V9w/aOg4VQzrLBaxaoVUo+AS64Ybga1EIY1Cgc1weD3xm0+oNI/lgxklGES0L3mPM2qs9HiPt3XfJ6rjdYolt+xOQZaJNyclmKPWKX753ZilEUrDBNW67bmJCTKqDGcCxwU/1ZhQNqR9bFsqaYQ6yKYXj8mJVbqkFytb0pCp+nsio5HWoyi0nRE1A73oTcT/vHZqepdBxmWSGpRstqiXCmJiMnmfdLlCZsTIEsoUt7cSNqCKMmNDKtgQvMWXl0njrOxVypW781L1ah5HHo7gGE7Bgwuowg3UoA4MJDzDK7w52nlx3p2PWWvOmc8cwh84nz9nVJAb</latexit>

ReLU

r1

<latexit sha1_base64="22B3VVfIuubqAVHp/aOtR/u/y5Q=">AAAB8XicbVA9TwJBEJ3zE/ELtbTZSEysyB0xaEm0sbBA4wGRI2RvGWDD3t5ld8+EEP6FjYXG2Ppv7Pw3LnCFgi+Z5OW9mczMCxPBtXHdb2dldW19YzO3ld/e2d3bLxwc1nWcKoY+i0WsmiHVKLhE33AjsJkopFEosBEOr6d+4wmV5rF8MKME2xHtS97jjBorPd7jrR8ERHXKnULRLbkzkGXiZaQIGWqdwlfQjVkaoTRMUK1bnpuY9pgqw5nAST5INSaUDWkfW5ZKGqFuj2cXT8ipVbqkFytb0pCZ+ntiTCOtR1FoOyNqBnrRm4r/ea3U9C7bYy6T1KBk80W9VBATk+n7pMsVMiNGllCmuL2VsAFVlBkbUt6G4C2+vEzq5ZJXKVXuzovVqyyOHBzDCZyBBxdQhRuogQ8MJDzDK7w52nlx3p2PeeuKk80cwR84nz9o2JAc</latexit>

ReLU

r2

<latexit sha1_base64="paxeZeDE8/zOaZpX4VLxs/WoZaw=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5UomXQxsIiipcEcyHsbSbJkr29Y3dPCEf+hY2FIrb+Gzv/jZuPQqMPBh7vzTAzL0wE18Z1v5zc0vLK6lp+vbCxubW9U9zdq+s4VQx9FotYNUOqUXCJvuFGYDNRSKNQYCMcXk38xiMqzWN5b0YJtiPal7zHGTVWerjDGz8IiOqcdoolt+xOQf4Sb05KMEetU/wMujFLI5SGCap1y3MT086oMpwJHBeCVGNC2ZD2sWWppBHqdja9eEyOrNIlvVjZkoZM1Z8TGY20HkWh7YyoGehFbyL+57VS07toZ1wmqUHJZot6qSAmJpP3SZcrZEaMLKFMcXsrYQOqKDM2pIINwVt8+S+pn5S9Srlye1aqXs7jyMMBHMIxeHAOVbiGGvjAQMITvMCro51n5815n7XmnPnMPvyC8/ENalyQHQ==</latexit>

ReLU

r3

<latexit sha1_base64="MQIQ5gorVxf1ZiNfUfhpp3PvwuM=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzGxInfGoCXRxsICjQdEjpC9ZYANe3uX3T0TQvgXNhYaY+u/sfPfuMAVCr5kkpf3ZjIzL0wE18Z1v53cyura+kZ+s7C1vbO7V9w/qOs4VQx9FotYNUOqUXCJvuFGYDNRSKNQYCMcXk/9xhMqzWP5YEYJtiPal7zHGTVWerzHWz8IiOqcd4olt+zOQJaJl5ESZKh1il9BN2ZphNIwQbVueW5i2mOqDGcCJ4Ug1ZhQNqR9bFkqaYS6PZ5dPCEnVumSXqxsSUNm6u+JMY20HkWh7YyoGehFbyr+57VS07tsj7lMUoOSzRf1UkFMTKbvky5XyIwYWUKZ4vZWwgZUUWZsSAUbgrf48jKpn5W9Srlyd16qXmVx5OEIjuEUPLiAKtxADXxgIOEZXuHN0c6L8+58zFtzTjZzCH/gfP4Aa+CQHg==</latexit>

ReLU

r4

[0,1]

[0,1]

<latexit sha1_base64="izn73OTm3XgsIYh7TdX9YQVLTeo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BL95MwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+n2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvUq5Ur8sVW+yOPJwAqdwDh5cQRXuoAYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A6unjN4=</latexit>

O

<latexit sha1_base64="oHZPM8CLAkuFbOPaotXUZQjyECs=">AAACEnicbZDLSgMxFIYzXmu9jbp0EyyCgpSZIlUEoejGZQV7gc5QMumZNjSTGZKMWkqfwY2v4saFIm5dufNtTC+gtv4Q+PnOOZycP0g4U9pxvqy5+YXFpeXMSnZ1bX1j097arqo4lRQqNOaxrAdEAWcCKpppDvVEAokCDrWgezms125BKhaLG91LwI9IW7CQUaINatqHXrnDzs7xfdPFHhO44Ry5PvbuoNUGAws/sGnnnLwzEp417sTk0ETlpv3ptWKaRiA05USphusk2u8TqRnlMMh6qYKE0C5pQ8NYQSJQfn900gDvG9LCYSzNExqP6O+JPomU6kWB6YyI7qjp2hD+V2ukOjz1+0wkqQZBx4vClGMd42E+uMUkUM17xhAqmfkrph0iCdUmxawJwZ0+edZUC3m3mC9eH+dKF5M4MmgX7aED5KITVEJXqIwqiKIH9IRe0Kv1aD1bb9b7uHXOmszsoD+yPr4B/2OajQ==</latexit>

� := x1 2 [0, 1] ^ x2 2 [0, 1]

<latexit sha1_base64="cT3z+/LKf/DKKyfnnlxX1lOJRwc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfa8XrniVt0ZyF/i5aQCOeq98me3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JklT4JY2VLGjJTf05kNNJ6HAW2M6JmqBe9qfif10lNeOlnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb78lzRPqt559ez2tFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcO8I2q</latexit>x1

<latexit sha1_base64="WQ1eUAu1DD8mx6Eo/k6Syc0haI4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJryPRi0eM8khgQ2aHBibMzm5mZo1kwyd48aAxXv0ib/6NA+xBwUo6qVR1p7sriAXXxnW/ndzK6tr6Rn6zsLW9s7tX3D9o6ChRDOssEpFqBVSj4BLrhhuBrVghDQOBzWB0M/Wbj6g0j+SDGcfoh3QgeZ8zaqx0/9StdIslt+zOQJaJl5ESZKh1i1+dXsSSEKVhgmrd9tzY+ClVhjOBk0In0RhTNqIDbFsqaYjaT2enTsiJVXqkHylb0pCZ+nsipaHW4zCwnSE1Q73oTcX/vHZi+ld+ymWcGJRsvqifCGIiMv2b9LhCZsTYEsoUt7cSNqSKMmPTKdgQvMWXl0mjUvYuyud3Z6XqdRZHHo7gGE7Bg0uowi3UoA4MBvAMr/DmCOfFeXc+5q05J5s5hD9wPn8AEHSNqw==</latexit>x2

<latexit sha1_base64="r18MQCUTbrdeXwWtlRQw6eoFfjs=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKkJIilYRhKIbd1awD2hCmUwn7dDJJM5MhBLqxl9x40IRt/6FO//GaZuFVg9cOJxzL/fe48eMSmXbX0Zubn5hcSm/XFhZXVvfMDe3GjJKBCZ1HLFItHwkCaOc1BVVjLRiQVDoM9L0B5djv3lPhKQRv1XDmHgh6nEaUIyUljrmjluTFJ6dw9I1PIRl6xi6PXIH7YOOWbQtewL4lzgZKYIMtY756XYjnISEK8yQlG3HjpWXIqEoZmRUcBNJYoQHqEfamnIUEumlkw9GcF8rXRhEQhdXcKL+nEhRKOUw9HVniFRfznpj8T+vnajg1EspjxNFOJ4uChIGVQTHccAuFQQrNtQEYUH1rRD3kUBY6dAKOgRn9uW/pFG2nIpVuTkqVi+yOPJgF+yBEnDACaiCK1ADdYDBA3gCL+DVeDSejTfjfdqaM7KZbfALxsc3OiKTjg==</latexit>

 := (O + 2.5 � 0)

Input Layer Output LayerHidden Layer 1 Hidden Layer 2

Figure 1 A neural network N and specification

particularly efficient for those instances that are falsified, which demonstrates the effectiveness
of our approach.

For a verification problem whose result is unknown beforehand, it is always desired to
reach the conclusion as quickly as possible. Given that verification of neural networks is
typically time- and resource-consuming, our approach provides a meaningful way to accelerate
the verification process. While performing verification of neural networks with the aim of
finding counterexamples sounds similar to approaches like testing or adversarial attacks,
our approach differs fundamentally from those approaches, in the sense that, while those
approaches deal with a single input each time and so they can never exhaust the search
space, our approach deals with sub-problems that are finitely many, and so we can finally
provide rigorous guarantees for specification satisfaction of neural networks.

Paper organization

The rest of the paper is organized as follows: §2 overviews our approach by using an
illustrative example; §3 introduces the necessary technical background; §4 presents the
proposed incremental verification approach; §5 presents our experimental evaluation results;
§6 discusses related work. Conclusion and future work are presented in §7.

2 Overview of The Proposed Approach

In this section, we use an example to illustrate how the proposed approach solves neural
network verification problems.

2.1 Verification Problem and BaB Approach
Fig. 1 depicts a (feed-forward) neural network N . It has an input layer, an output layer,
and two hidden layers that are fully-connected, namely, the output of each hidden layer is
computed by taking the weighted sum of the output of the previous layer, and applying the
ReLU activation function. The output O of the neural network is computed by taking only
the weighted sum of the output of the second hidden layer (without activation function).
The weights of each layer are as labeled in Fig. 1. This neural network N is expected to
satisfy such a specification: for any input (x1, x2) ∈ [0, 1] × [0, 1], it should hold that the
output O + 2.5 ≥ 0. Verification aims to give a formal proof to certify that N indeed satisfies
the specification, or give a counterexample instead if N does not satisfy the specification.

As the state-of-the-art neural network verification approach, Branch-and-Bound (BaB) [5]
has overarched several famous verification tools, such as αβ-Crown [51]. The application of
BaB to neural network verification often relies on the combination with off-the-shelf verifiers,

G. Zhang et al. 5

-2.1

Step 1 Step 3Step 2

-2.1

-1.8 -2

0.4 -1.4

<latexit sha1_base64="iahbBj2j4tEgJ7y75Tl2N8tJd9E=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSIIQklEqseiF48VTFtoY9lsp+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhQ8epYuizWMSqFVKNgkv0DTcCW4lCGoUCm+Hoduo3n1BpHssHM04wiOhA8j5n1FjJV4/nXa9bKrsVdwayTLyclCFHvVv66vRilkYoDRNU67bnJibIqDKcCZwUO6nGhLIRHWDbUkkj1EE2O3ZCTq3SI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/DjIuk9SgZPNF/VQQE5Pp56THFTIjxpZQpri9lbAhVZQZm0/RhuAtvrxMGhcVr1qp3l+Wazd5HAU4hhM4Aw+uoAZ3UAcfGHB4hld4c6Tz4rw7H/PWFSefOYI/cD5/ACH3jkI=</latexit>

r+
1

<latexit sha1_base64="9jR8vzZCZCl5lp+8nqqX0wAi3Eo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4sSQi1WPRi8cKpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+Oyura+sbm4Wt4vbO7t5+6eCwoeNUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0O/WbT6g0j+WDGScYRHQgeZ8zaqzkq8fzrtctld2KOwNZJl5OypCj3i19dXoxSyOUhgmqddtzExNkVBnOBE6KnVRjQtmIDrBtqaQR6iCbHTshp1bpkX6sbElDZurviYxGWo+j0HZG1Az1ojcV//PaqelfBxmXSWpQsvmifiqIicn0c9LjCpkRY0soU9zeStiQKsqMzadoQ/AWX14mjYuKV61U7y/LtZs8jgIcwwmcgQdXUIM7qIMPDDg8wyu8OdJ5cd6dj3nripPPHMEfOJ8/JQOORA==</latexit>

r�1

<latexit sha1_base64="ANgvhIgdq15Wh3lj9Fks5VJ0nis=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRZBEMpukeqx6MVjBbcttGvJptk2NJssSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etbRMFaE+kVyqTog15UxQ3zDDaSdRFMchp+1wfDvz209UaSbFg5kkNIjxULCIEWys5KvHi36tX664VXcOtEq8nFQgR7Nf/uoNJEljKgzhWOuu5yYmyLAyjHA6LfVSTRNMxnhIu5YKHFMdZPNjp+jMKgMUSWVLGDRXf09kONZ6Eoe2M8ZmpJe9mfif101NdB1kTCSpoYIsFkUpR0ai2edowBQlhk8swUQxeysiI6wwMTafkg3BW355lbRqVa9erd9fVho3eRxFOIFTOAcPrqABd9AEHwgweIZXeHOE8+K8Ox+L1oKTzxzDHzifPyN7jkM=</latexit>

r+
2

<latexit sha1_base64="hsKO+JPCw1izLSG1nLMi8Txhe1M=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiRbJLDHokevGIiQsksJJu6UJDt920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PWlqmilCfSC5VJ8Saciaob5jhtJMoiuOQ03Y4vp357SeqNJPiwUwSGsR4KFjECDZW8tXjRb/WL1fcqjsHWiVeTiqQo9kvf/UGkqQxFYZwrHXXcxMTZFgZRjidlnqppgkmYzykXUsFjqkOsvmxU3RmlQGKpLIlDJqrvycyHGs9iUPbGWMz0sveTPzP66Ymug4yJpLUUEEWi6KUIyPR7HM0YIoSwyeWYKKYvRWREVaYGJtPyYbgLb+8Slq1qlev1u8vK42bPI4inMApnIMHV9CAO2iCDwQYPMMrvDnCeXHenY9Fa8HJZ47hD5zPHyaHjkU=</latexit>

r�2

0.4 -0.3

<latexit sha1_base64="ANgvhIgdq15Wh3lj9Fks5VJ0nis=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRZBEMpukeqx6MVjBbcttGvJptk2NJssSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etbRMFaE+kVyqTog15UxQ3zDDaSdRFMchp+1wfDvz209UaSbFg5kkNIjxULCIEWys5KvHi36tX664VXcOtEq8nFQgR7Nf/uoNJEljKgzhWOuu5yYmyLAyjHA6LfVSTRNMxnhIu5YKHFMdZPNjp+jMKgMUSWVLGDRXf09kONZ6Eoe2M8ZmpJe9mfif101NdB1kTCSpoYIsFkUpR0ai2edowBQlhk8swUQxeysiI6wwMTafkg3BW355lbRqVa9erd9fVho3eRxFOIFTOAcPrqABd9AEHwgweIZXeHOE8+K8Ox+L1oKTzxzDHzifPyN7jkM=</latexit>

r+
2

<latexit sha1_base64="hsKO+JPCw1izLSG1nLMi8Txhe1M=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiRbJLDHokevGIiQsksJJu6UJDt920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PWlqmilCfSC5VJ8Saciaob5jhtJMoiuOQ03Y4vp357SeqNJPiwUwSGsR4KFjECDZW8tXjRb/WL1fcqjsHWiVeTiqQo9kvf/UGkqQxFYZwrHXXcxMTZFgZRjidlnqppgkmYzykXUsFjqkOsvmxU3RmlQGKpLIlDJqrvycyHGs9iUPbGWMz0sveTPzP66Ymug4yJpLUUEEWi6KUIyPR7HM0YIoSwyeWYKKYvRWREVaYGJtPyYbgLb+8Slq1qlev1u8vK42bPI4inMApnIMHV9CAO2iCDwQYPMMrvDnCeXHenY9Fa8HJZ47hD5zPHyaHjkU=</latexit>

r�2

-2.1

-1.8 -2

<latexit sha1_base64="iahbBj2j4tEgJ7y75Tl2N8tJd9E=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSIIQklEqseiF48VTFtoY9lsp+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhQ8epYuizWMSqFVKNgkv0DTcCW4lCGoUCm+Hoduo3n1BpHssHM04wiOhA8j5n1FjJV4/nXa9bKrsVdwayTLyclCFHvVv66vRilkYoDRNU67bnJibIqDKcCZwUO6nGhLIRHWDbUkkj1EE2O3ZCTq3SI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/DjIuk9SgZPNF/VQQE5Pp56THFTIjxpZQpri9lbAhVZQZm0/RhuAtvrxMGhcVr1qp3l+Wazd5HAU4hhM4Aw+uoAZ3UAcfGHB4hld4c6Tz4rw7H/PWFSefOYI/cD5/ACH3jkI=</latexit>

r+
1

<latexit sha1_base64="9jR8vzZCZCl5lp+8nqqX0wAi3Eo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4sSQi1WPRi8cKpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+Oyura+sbm4Wt4vbO7t5+6eCwoeNUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0O/WbT6g0j+WDGScYRHQgeZ8zaqzkq8fzrtctld2KOwNZJl5OypCj3i19dXoxSyOUhgmqddtzExNkVBnOBE6KnVRjQtmIDrBtqaQR6iCbHTshp1bpkX6sbElDZurviYxGWo+j0HZG1Az1ojcV//PaqelfBxmXSWpQsvmifiqIicn0c9LjCpkRY0soU9zeStiQKsqMzadoQ/AWX14mjYuKV61U7y/LtZs8jgIcwwmcgQdXUIM7qIMPDDg8wyu8OdJ5cd6dj3nripPPHMEfOJ8/JQOORA==</latexit>

r�1

(a) BaB’s process for verification

-2.1

Step 1

-2.1

-1.8 -2

0.4 -1.4

<latexit sha1_base64="iahbBj2j4tEgJ7y75Tl2N8tJd9E=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSIIQklEqseiF48VTFtoY9lsp+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhQ8epYuizWMSqFVKNgkv0DTcCW4lCGoUCm+Hoduo3n1BpHssHM04wiOhA8j5n1FjJV4/nXa9bKrsVdwayTLyclCFHvVv66vRilkYoDRNU67bnJibIqDKcCZwUO6nGhLIRHWDbUkkj1EE2O3ZCTq3SI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/DjIuk9SgZPNF/VQQE5Pp56THFTIjxpZQpri9lbAhVZQZm0/RhuAtvrxMGhcVr1qp3l+Wazd5HAU4hhM4Aw+uoAZ3UAcfGHB4hld4c6Tz4rw7H/PWFSefOYI/cD5/ACH3jkI=</latexit>

r+
1

<latexit sha1_base64="9jR8vzZCZCl5lp+8nqqX0wAi3Eo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4sSQi1WPRi8cKpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+Oyura+sbm4Wt4vbO7t5+6eCwoeNUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0O/WbT6g0j+WDGScYRHQgeZ8zaqzkq8fzrtctld2KOwNZJl5OypCj3i19dXoxSyOUhgmqddtzExNkVBnOBE6KnVRjQtmIDrBtqaQR6iCbHTshp1bpkX6sbElDZurviYxGWo+j0HZG1Az1ojcV//PaqelfBxmXSWpQsvmifiqIicn0c9LjCpkRY0soU9zeStiQKsqMzadoQ/AWX14mjYuKV61U7y/LtZs8jgIcwwmcgQdXUIM7qIMPDDg8wyu8OdJ5cd6dj3nripPPHMEfOJ8/JQOORA==</latexit>

r�1

<latexit sha1_base64="ANgvhIgdq15Wh3lj9Fks5VJ0nis=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRZBEMpukeqx6MVjBbcttGvJptk2NJssSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etbRMFaE+kVyqTog15UxQ3zDDaSdRFMchp+1wfDvz209UaSbFg5kkNIjxULCIEWys5KvHi36tX664VXcOtEq8nFQgR7Nf/uoNJEljKgzhWOuu5yYmyLAyjHA6LfVSTRNMxnhIu5YKHFMdZPNjp+jMKgMUSWVLGDRXf09kONZ6Eoe2M8ZmpJe9mfif101NdB1kTCSpoYIsFkUpR0ai2edowBQlhk8swUQxeysiI6wwMTafkg3BW355lbRqVa9erd9fVho3eRxFOIFTOAcPrqABd9AEHwgweIZXeHOE8+K8Ox+L1oKTzxzDHzifPyN7jkM=</latexit>

r+
2

<latexit sha1_base64="hsKO+JPCw1izLSG1nLMi8Txhe1M=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiRbJLDHokevGIiQsksJJu6UJDt920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PWlqmilCfSC5VJ8Saciaob5jhtJMoiuOQ03Y4vp357SeqNJPiwUwSGsR4KFjECDZW8tXjRb/WL1fcqjsHWiVeTiqQo9kvf/UGkqQxFYZwrHXXcxMTZFgZRjidlnqppgkmYzykXUsFjqkOsvmxU3RmlQGKpLIlDJqrvycyHGs9iUPbGWMz0sveTPzP66Ymug4yJpLUUEEWi6KUIyPR7HM0YIoSwyeWYKKYvRWREVaYGJtPyYbgLb+8Slq1qlev1u8vK42bPI4inMApnIMHV9CAO2iCDwQYPMMrvDnCeXHenY9Fa8HJZ47hD5zPHyaHjkU=</latexit>

r�2

Step 3

-2.1

-1.8 -2

<latexit sha1_base64="iahbBj2j4tEgJ7y75Tl2N8tJd9E=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSIIQklEqseiF48VTFtoY9lsp+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhQ8epYuizWMSqFVKNgkv0DTcCW4lCGoUCm+Hoduo3n1BpHssHM04wiOhA8j5n1FjJV4/nXa9bKrsVdwayTLyclCFHvVv66vRilkYoDRNU67bnJibIqDKcCZwUO6nGhLIRHWDbUkkj1EE2O3ZCTq3SI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/DjIuk9SgZPNF/VQQE5Pp56THFTIjxpZQpri9lbAhVZQZm0/RhuAtvrxMGhcVr1qp3l+Wazd5HAU4hhM4Aw+uoAZ3UAcfGHB4hld4c6Tz4rw7H/PWFSefOYI/cD5/ACH3jkI=</latexit>

r+
1

<latexit sha1_base64="9jR8vzZCZCl5lp+8nqqX0wAi3Eo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4sSQi1WPRi8cKpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+Oyura+sbm4Wt4vbO7t5+6eCwoeNUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0O/WbT6g0j+WDGScYRHQgeZ8zaqzkq8fzrtctld2KOwNZJl5OypCj3i19dXoxSyOUhgmqddtzExNkVBnOBE6KnVRjQtmIDrBtqaQR6iCbHTshp1bpkX6sbElDZurviYxGWo+j0HZG1Az1ojcV//PaqelfBxmXSWpQsvmifiqIicn0c9LjCpkRY0soU9zeStiQKsqMzadoQ/AWX14mjYuKV61U7y/LtZs8jgIcwwmcgQdXUIM7qIMPDDg8wyu8OdJ5cd6dj3nripPPHMEfOJ8/JQOORA==</latexit>

r�1

Step 2

(b) Oliva’s process for verification.

Figure 2 Neural network verification problem and solution via BaB (BaB vs. Oliva).

and a common choice involves the family of approximated verifiers. These verifiers can
efficiently decide whether the neural network satisfies the specification, by constructing a
convex over-approximation of neural network outputs: if the over-approximated output
satisfies the specification, the original output must also satisfy; however, if not, it does not
indicate that the original output also violates the specification, and so it may raise a false
alarm that reports a specification violation that is actually not existent.

BaB is introduced to solve this problem. It is essentially a “divide-and-conquer” strategy
that splits the problem when necessary and applies approximated verifiers to sub-problems to
reduce the occurrences of false alarms. In this context, a problem can be split by predicating
over the sign of the input of a ReLU function (i.e., by allowing the ReLU’s input to be
positive or negative only), such that it can be decomposed to two linear functions each of
which is easier to handle. BaB decides whether a (sub-)problem is needed to be split further,
based on a value p̂ returned from the approximated verifier. Intuitively, p̂ indicates how far
the specification is from being violated by the over-approximation of a (sub-)problem. If
p̂ is positive, it implies that problem has been verified and so there is no need to split it;
otherwise, it implies that the problem cannot be verified, and so BaB needs to check whether
it is a false alarm, by checking whether the counterexample reported by the verifier is a
spurious one. Fig. 2a illustrates how BaB solves the verification problem in Fig. 1:
Step 1 — BaB first applies a verifier to the original verification problem, which returns

a negative p̂ = −2.1. By validating the counterexample reported by the verifier, BaB
identifies that it is a false alarm and decides to split the problem;

Step 2 — BaB splits the problem identified by the root node, and applies the verifier to the
two sub-problems respectively. Again, it identifies that the verifier raises a false alarm for
each of the sub-problems. Therefore, it needs to split both sub-problems;

Step 3 — Similarly, BaB applies the verifier in turn to the newly expanded sub-problems.
It manages to verify two sub-problems (i.e., the two nodes both with p̂ = 0.4), and also
identifies a false alarm (i.e., the node with p̂ = −0.3). In the node with p̂ = −1.4, BaB finds
that the counterexample associated with this sub-problem is a real one; because having

6 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

one such real counterexample suffices to show that the specification can be violated, BaB
terminates the verification at this point with a verdict that the specification is violated.

2.2 The Proposed Approach

For a verification problem that is considerably difficult, BaB can often produce a space that
contains a large number of sub-problems. However, as shown in Fig. 2a, the classic BaB
explores these sub-problems by a naive “first come, first served” order, which ignores the
difference of the sub-problems in terms of their importance, and thus can be very inefficient.

To bridge this gap, we propose an approach that explores the space of sub-problems
guided by an order of importance of different sub-problems. Specifically, we identify the
importance of different sub-problems by their likelihood of containing counterexamples, in
the sense that the more likely a sub-problem contains counterexamples, it should be more
prioritized in the exploration of the sub-problem space—once we can find a counterexample
there, we can immediately terminate the verification and draw a conclusion. Even if it does
not manage to find a counterexample in any problem, it just visits the sub-problems in a
different order from the original BaB, so it still would not be much slower.

Fig. 2b demonstrates how our approach solves the same verification problem in Fig. 1.
In early stages, Oliva works the same as BaB, i.e., it visits the (sub-)problems and
obtains the same feedback p̂ from the verifier, and based on that, it decides to split the
(sub-)problems and apply verifiers to sub-problems;
The difference comes from the rightmost plot of Fig. 2b, in which Oliva prioritizes the
sub-problem that has p̂ = −2 rather than its sibling that has p̂ = −1.8 to expand. This
is because p̂ is a indicator that reflects how far the sub-problem is from being violated
(based on the over-approximation performed by the verifier), and in this case p̂ = −2
signifies that this sub-problem has been violated more than the other and so it is more
likely to find a counterexample there. Indeed, Oliva manages to find a real counterexample
in one of its sub-problems, thereby terminating the verification immediately after that.

By this strategy, we manage to save two visits to sub-problems compared to BaB, each
of which consists of an expensive problem solving process, and therefore, it reaches the
conclusion of the problem more efficiently than BaB.

A variant of our approach inspired by simulated annealing

Essentially, our proposed approach changes the naive “breadth-first” exploration of the
sub-problem space in the classic BaB to an intelligent way guided by the likelihood of finding
counterexamples in different sub-problems. However, as this guidance consists of a total
order over different branches, it may lose some chances of finding counterexamples in some
branches that initially seem not promising.

To mitigate this issue, we also propose a variant of our approach, inspired by simulated
annealing [24]. It works as follows: throughout the process, we maintain a temperature that
keeps decreasing slowly, which is used to control the trade-off between “exploitation” and
“exploration”. Initially, when the temperature is high, our algorithm tends to explore the
sub-problem space by assigning a considerably high probability to accept a sub-problem that
is not promising; as temperature goes down, it converges to the optimal sub-problem; due to
the exploration of the search space at the initial stage, the algorithm is likely to converge to
the globally optimal sub-problems. In this way, we can mitigate the side-effect of being too
greedy, and strike a balance between “exploitation” and “exploration”.

G. Zhang et al. 7

3 Preliminaries

In this section, we first introduce the neural network verification problem, and then introduce
the state-of-the-art verification approach called branch-and-bound (BaB).

3.1 Neural Network Verification Problem
In this paper, we consider feed-forward neural networks, as depicted in Fig. 1.

▶ Definition 1 (Neural networks). A (feed-forward) neural network N : Rn → Rm maps an
n-dim input to an m-dim output (see Fig. 1 for an example). It accomplishes the mapping by
alternating between affine transformations (parametrized by weight matrix Wi and bias vector
Bi) and non-linear activation functions σ; namely, the output xi of layer i (i ∈ {1, . . . , L})
is computed based on the output xi−1 of layer i− 1, as follows: xi = σ(Wixi−1 + Bi). Here,
the computation unit that computes each dimension of xi is called a neuron; in each layer
i, the number of neurons is equivalent to the number of dimensions of xi. Specially, x0
is the input and xL is the output of the neural network. There could be different choices
for the non-linear activation functions, such as ReLU, sigmoid and tanh; following many
existing works [25], we adopt Rectified Linear Unit (ReLU) (i.e., ReLU(x) = max(0, x)) as
the activation function in our neural networks.

Specifications are logical expressions that formalize users’ desired properties about neural
networks. In this paper, we adopt the following notation in Def. 2 as our specification
formalism, and later we show that it can be used to formalize commonly-used properties,
such as local robustness of neural networks.

▶ Definition 2 (Specification). We denote by a pair (Φ, Ψ) a specification for neural networks,
where Φ is called an input specification that predicates over the input region, and Ψ is called
an output specification that predicates over the output of a neural network. Specifically, we
denote the output specification Ψ as follows: f(N(x0)) > 0, where f : Rm → R is a function
that maps an m-dim vector to a real number.

▶ Definition 3 (Verification problem). A verification problem aims to answer the following
question: given a neural network N and a specification (Φ, Ψ), whether Ψ(N(x)) holds, for
any input x that holds Φ(x). A verifier is a tool used to answer a verification problem: it
either returns true, certifying N ’s satisfaction to the specification, or returns false with a
counterexample x̂, which is an input that holds Φ(x̂) but does not hold Ψ(x̂).

We now explain how our notations can be used to formalize a neural network verification
problem against local robustness, which is a property often considered in the domain of
image classification. Local robustness requires that a neural network classifier should make
consistent classification for two images x and x0, where x is produced by adding small
perturbations to x0. Formally, given a reference input x0, Φ(x) requires that the input x must
stay in the region {x | ∥x− x0∥∞ ≤ ϵ}, where ∥ · ∥∞ denotes the ℓ∞-norm distance metric
and ϵ is a small real value, and Ψ(N(x)) requires that min1≤i≤m,i̸=il

(N(x)il
−N(x)i) > 0,

where N(x)i denotes the i-th component of the output vector N(x), and il is the label of x0
inferred by the neural network, i.e., il = arg max

1≤i≤m
N(x0)i.

3.2 Branch-and-Bound (BaB) – State-of-the-Art Verification Approach
There have been various approaches proposed to solve the neural network verification problem.
Exact encoding [23, 47, 7] formalizes the inference process and the specification of a neural

8 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

network to be an SMT or optimization problem and solves them by dedicated [23] or off-the-
shelf [47, 7] solvers. These approaches are sound and complete, but due to the non-linearity
of neural network inferences, they suffer from severe scalability issues and cannot handle
neural networks of large sizes. To resolve this issue, approximated approaches [42, 41, 44]
over-approximate the output of neural networks by linear relaxation, and they can certify
the satisfaction of specification if the over-approximated output satisfies the specification.
These approaches are typically efficient and sound; however, they are not complete, i.e., they
may raise false alarms with spurious counterexamples, if the over-approximated output does
not satisfy the specification. As the state-of-the-art, Branch-and-Bound (BaB) [5] employs
approximated verifiers and splits the problem when necessary (i.e., if a false alarm arises in a
problem), because by solving sub-problems it can improve the precision of approximation and
reduce the occurrence of false alarms. BaB keeps problem splitting until all of the sub-problems
are certified (such that the original problem can be certified) or a real counterexample is
detected with a sub-problem (such that the original problem is falsified).

In the following, we explain the necessary ingredients and detailed workflow of BaB.

Approximated verifiers

Approximated verifiers, denoted as LpVerifier, are a class of verifiers that solve a verification
problem by computing an over-approximation of the output region of neural networks—if the
over-approximation satisfies the specification, it implies that the original output region must
also satisfy it. Typically, LpVerifier can return a tuple ⟨p̂, x̂⟩, where p̂ ∈ R is called a verifier
assessment, which is a quantity that indicates the extent to which the over-approximated
output satisfies the specification. Formally, given an LpVerifier, it can construct a region
Ω̂ ⊇ {N(x) | Φ(x) = true}, which over-approximates the output region of a neural network
N ; then, LpVerifier computes p̂ as follows: p̂ := miny∈Ω̂ f(y), where f is as defined in
Def. 2. If p̂ is positive, it implies that the original output also satisfies the specification, and
so it can certify the satisfaction of neural networks. Conversely, if p̂ is negative, LpVerifier
deems that the specification is violated and provides a counterexample input x̂ as an evidence.
However, due to the over-approximation, this reported violation of LpVerifier could be
a false alarm and the counterexample x̂ may be a spurious one, i.e., the corresponding
output N(x̂) of x̂ actually satisfies the specification. In this case, just based on the result of
LpVerifier, we cannot infer whether N holds or violates the specification. This situation is
referred to as the completeness issue of approximated verifiers.

There have been various approximation strategies that can be used to implement approx-
imated verifiers, e.g., DeepPoly [44] and ReluVal [50], and mostly, the over-approximation
is accomplished by using linear constraints to bound the output range of the non-linear
ReLU functions. In particular, we assume that our adopted approximated verifiers hold
the monotonicity property, namely, for two output regions of neural networks that hold
Ω1 ⊂ Ω2, if we over-approximate them by using the same approximated verifier LpVerifier,
the obtained over-approximation Ω̂1 and Ω̂2 hold that Ω̂1 ⊆ Ω̂2. While there can be different
options of over-approximation strategies, our proposed approach is orthogonal to them, so
we can adopt any approximated verifiers that hold our assumption about monotonicity.

Branch-and-Bound (BaB)

BaB is the state-of-the-art neural network verification approach, and has been adopted in
several advanced verification tools, such as αβ-Crown [51] and Marabou [52]. It is essentially
a “divide-and-conquer” strategy, that divides a verification problem adaptively and applies

G. Zhang et al. 9

Algorithm 1 Branch-and-Bound (BaB) [5]

Require: A neural network N , an input specification Φ, an output specification Ψ, an
approximated verifier LpVerifier(·), and a ReLU selection heuristic H(·).

Ensure: A verdict ∈ {true, false}.
1: Q← {⊤}
2: T ← ∅
3: function BaB(N, Φ, Ψ, Q)
4: if Empty(Q) then
5: return true
6: Γ← Pop(Q)
7: ⟨p̂, x̂⟩ ← LpVerifier(N, Φ, Ψ, Γ)
8: T ← T ∪ {⟨Γ, p̂⟩}
9: if p̂ < 0 then

10: if Valid(x̂, N, Ψ) then
11: return false
12: else
13: rk ← H(Γ)
14: for a ∈ {r+

k , r−
k } do

15: Push(Q, Γ ∧ a)
16: return BaB(N, Φ, Ψ, Q)

off-the-shelf verifiers (such as approximated verifiers) to solve the sub-problems. Because
approximated verifiers often achieve better precision on sub-problems, BaB can thus overcome
the weaknesses of the plain application of approximated verifiers to the original problem and
resolve the issues of false alarms.

Before looking into the details of BaB, we first introduce ReLU specification, which is an
important notion in the algorithm of BaB.

▶ Definition 4 (ReLU specification). Let N be a neural network consisting of K neurons, and
x̂i ∈ R (i ∈ {1, . . . , K}) be the input for the ReLU function in the i-th neuron. An atomic
proposition AP w.r.t. the i-th neuron is defined as either x̂i ≥ 0 (written as r+

i) or x̂i < 0
(written as r−

i). Then, a ReLU specification Γ is defined as the conjunction of a sequence
Set(Γ) := {AP1, . . . , AP|Γ|} of atomic propositions, where each AP ∈ Set(Γ) is defined w.r.t.
a distinct neuron. |Γ| is the number of atomic propositions in Set(Γ); specially if |Γ| = 0,
Γ is denoted as ⊤. Moreover, we define a refinement relation ≺ over ReLU specifications,
namely, given two ReLU specifications Γi and Γj, we say Γj refines Γi (denoted as Γi ≺ Γj)
if and only if Set(Γi) ⊂ Set(Γj).

By selecting a neuron i, we can split the ReLU function into two linear functions, each
identified by a predicate r+

i or r−
i over the input of ReLU. Thereby, a neural network

verification problem boils down to two sub-problems, for each of which LpVerifier does not
need to perform over-approximation for the ReLU function in the i-th neuron.

The workflow of BaB is presented in Alg. 1. In Alg. 1, we allow LpVerifier to take
an additional argument, namely, a ReLU specification Γ, which identifies a sub-problem
by adding the constraints in Set(Γ) to constrain the inputs of a number of selected ReLU
functions. It uses a FIFO queue Q to maintain the problem to be solved, which is initialized
to be a set that consists of ⊤ only, identifying the original verification problem.

i) First, it applies LpVerifier to the original problem (Line 7): if LpVerifier returns a

10 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

positive p̂, or a negative p̂ with a valid counterexample x̂ (Line 10), then verification
can be terminated with a verdict returned accordingly;

ii) In the case it returns a negative p̂ with a spurious counterexample (Line 12), it divides
the verification problem into two sub-problems. This is achieved by first selecting a
neuron (i.e., a ReLU) in the network according to a pre-defined ReLU selection heuristics
H (Line 13), and then identifying two sub-problems each identified by an additional
constraint on the input of the selected ReLU function (Line 15).

iii) It applies LpVerifier to the new sub-problems respectively, and decides whether it
needs to further split the sub-problem, following the same rule in Step ii. In Alg. 1, this
is implemented by recursive call of the BaB function in Line 16.

In BaB, the ReLU selection heuristics H involves an order over different neurons such that
it can select the next ReLU based on an existing ReLU specification. There has been a rich
body of literature that proposes different ReLU selection strategies, such as DeepSplit [21]
and FSB [10]. However, our proposed approach in §4 is orthogonal to these strategies and
so it can work with existing strategies. In this work, we follow an existing neural network
verification approach [48] and we adopt the state-of-the-art ReLU selection strategy in [21].

As a result of Alg. 1, it forms a binary tree T (see Line 2 and Line 8) that records the
history of problem splitting during the BaB process. In this tree, each node ⟨Γ, p̂⟩ denotes a
sub-problem, identified by a ReLU specification Γ and the verifier assessment p̂ returned by
LpVerifier that signifies the satisfaction of the sub-problem.

▶ Lemma 5 (Soundness and completeness). The BaB algorithm is sound and complete.

Proof. Soundness requires that if BaB returns true, the neural network must satisfy the
specification. The soundness of BaB relies on that: 1) LpVerifier is sound; 2) the ReLU
specifications identified by the leaf nodes of the BaB tree cover all the cases about the input
conditions of the split ReLUs in the neural network.

Completeness requires that if BaB returns false, the neural network must violate the
specification. The completeness of BaB relies on the fact that the counterexamples x̂ reported
by BaB are all validated and so they must be real. Moreover, in the worst case if all neurons
are split, the sub-problem will be linear and so a x̂ must be a real one if it exists.

Finally, BaB is guaranteed to return either true or false within a finite time budget, because
the number of neurons in a neural network is finite. ◀

4 Oliva: The Proposed Verification Approach

As a “divide-and-conquer” strategy, BaB can produce a huge space that consists of quantities
of sub-problems; however, as shown in Alg. 1, the existing BaB approach explores this space
in a naive “first come, first served” manner (implemented by the first-in-first-out queue in
Alg. 1 that stores the (sub)-problems to be solved), which can be very inefficient to exhaust
the sub-problem space.

Our proposed approach involves exploring the BaB tree in an intelligent fashion, guided
by the severity of different tree nodes. In §4.1, we showcase such a severity order, defined by
the probability of finding counterexamples with a sub-problem. The intuition behind this
order is that, by prioritizing sub-problems that are more likely to find counterexamples, we
may quickly find a counterexample and thereby immediately terminate the verification. If
we cannot find it after visiting all sub-problems, we achieve certification of the problem.

G. Zhang et al. 11

4.1 Counterexample Potentiality Order

We introduce an order over different sub-problems based on their probability of containing
counterexamples. Given a node in BaB tree that identifies a sub-problem, we can infer this
probability using the following two attributes:

Node depth. In a BaB tree, the depth of a node signifies the levels of problem splitting,
and for more finely-split sub-problems, LpVerifier introduces less over-approximation.
Because of this, if a node Γ with a greater depth is still deemed by LpVerifier as
violating the specification (i.e., the verifier assessment p̂ is negative), it is more likely that
Γ indeed contains real counterexamples.

Verifier assessment. Given a node in BaB tree that identifies a sub-problem, its p̂ returned
by LpVerifier can be considered as a quantitative indicator of how far the sub-problem
is from being violated. Due to our assumption about the monotonicity of LpVerifier in
performing over-approximation, given a fixed LpVerifier, p̂ is correlated to the original
output region of the neural network. Therefore, in the case p̂ is negative, the greater |p̂|
is, there is a higher possibility that the original output region is closer to violation of the
specification, and so it is more likely that the sub-problem contains a real counterexample.

Based on the above two node attributes, we define the suspiciousness of a BaB tree node,
and then define a Counterexample POtentiality (CePO) order over different nodes.

▶ Definition 6 (Suspiciousness of sub-problems). Let Γ be a node of the BaB tree that has
a verifier assessment p̂ (with a counterexample x̂ if p̂ < 0). The suspiciousness susp(Γ) ∈
[0, 1] ∪ {+∞,−∞} of the node Γ maps Γ to a real number as follows:

susp(Γ) :=

−∞ if p̂ > 0
+∞ if p̂ < 0 and valid(x̂)
λ depth(Γ)

K + (1− λ) p̂
p̂min

otherwise

where λ ∈ [0, 1] is a parameter that controls the weights of the two attributes, and K is the
total number of neurons (i.e., ReLUs) in the network.

Intuitively, the suspiciousness of a node encompasses a heuristic that estimates the prob-
ability of the relevant sub-problem violating the specification. It is particularly meaningful in
the case when p̂ < 0 and the counterexample is spurious, and set to be +∞ if the sub-problem
is provably violated, and −∞ if the sub-problem is certified. By their suspiciousness, we
define the CePO order over different nodes as follows:

▶ Definition 7 (Counterexample potentiality (CePO) order). Let Γ1 and Γ2 be two nodes in
a BaB tree, and p̂1 and p̂2 be verifier assessments for Γ1 and Γ2, respectively. We define a
CePO order ⊏ between the two nodes as follows:

Γ1 ⊏ Γ2 iff susp(Γ1) < susp(Γ2)

The CePO order allows us to sort the nodes in BaB tree,1 and so it can serve as a guidance
to our verification approach in §4.2 and §4.3.

12 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

Algorithm 2 OlivaGR: The proposed greedy algorithm

Require: A neural network N , input and output specification Φ and Ψ, an approximated
verifier LpVerifier(·), a ReLU selection heuristic H(·), and a hyperparameter λ.

Ensure: A verdict ∈ {true, false, timeout}

1: T ← {ε}
2: ⟨p̂, x̂⟩ ← LpVerifier(N, Φ, Ψ, ε)
3: R(ε)← susp(ε) ▷ a metric for child selection
4: if p̂ < 0 and not valid(x̂) then
5: while not reach termination condition do
6: GreedyBaB(ε, N, Φ, Ψ)

7: return

true if R(ε) = −∞
false if R(ε) = +∞
timeout otherwise

8: else

9: return
{

true if p̂ > 0
false if p̂ < 0 and valid(x̂)

10: function GreedyBaB(Γ, N, Φ, Ψ)
11: rk ← H(Γ)
12: if Γ · r+

k ∈ T then ▷ check existence of children
13: Γ∗ ← Γ · a∗ s.t. a∗ ← arg max

a∈{r+
k

,r−
k

}
R(Γ · a)

14: GreedyBaB(Γ∗, N, Φ, Ψ)
15: else
16: for a ∈ {r+

k , r−
k } do ▷ T expansion via BaB.

17: ⟨p̂, x̂⟩ ← LpVerifier(N, Φ, Ψ, Γ · a) ▷ apply LpVerifier with Γ ∧ a

18: R(Γ · a)← susp(Γ · a) ▷ compute R
19: T ← T ∪ {Γ · a} ▷ add to the tree of Γ ∧ a

20: R(Γ)← arg max
a∈{r+

k
,r−

k
}

R(Γ · a)

4.2 OlivaGR: Greedy Exploration of BaB Tree
The OlivaGR algorithm, presented in Alg. 2, implements a greedy strategy that explores the
space of BaB tree nodes guided by the CePO order. Compared to the classic BaB, it always
selects the most suspicious node to expand, such that it can maximize the probability of
finding counterexamples and thereby conclude the verification problem efficiently.

The algorithm begins with applying the approximated verifier LpVerifier to the original
verification problem, identified by the ReLU specification ε (Line 2), which returns a tuple
⟨p̂, x̂⟩ containing a verifier assessment p̂, possibly followed by a counterexample x̂. The
suspiciousness susp(ε) of the root node is then computed based on this assessment. At this
point, if p̂ > 0 or if p̂ < 0 with a valid counterexample x̂, the algorithm can be immediately
terminated with a conclusive verdict (Line 9). Otherwise, the algorithm enters its main

1 In the case if two nodes have the same suspiciousness, we simply impose a random order; in the case
both are −∞ or +∞, the comparison is meaningless and so we do not need to sort them.

G. Zhang et al. 13

loop where it iteratively calls GreedyBaB to split and verify the sub-problems until a
termination condition is reached (Line 5-7). We elaborate on the termination condition later.

The GreedyBaB function implements the main process of tree exploration and problem
splitting. By each of its execution, it selects the maximal sub-problem in terms of the CePO
order in the tree and applies LpVerifier to its subsequent sub-problems with the aim of
finding counterexamples. The function begins with selecting a ReLU rk as a successor of the
current node (Line 11) using the pre-defined ReLU selection heuristics H (see §3.2), and then
it recursively calls GreedyBaB until it reaches the greatest node Γ, in terms of the CePO
order, whose children are not expanded yet (Line 12-14). After reaching such a node Γ, it
expands the children of Γ, by applying LpVerifier respectively to the two sub-problems
identified by the children of Γ (Line 16-17). It also computes and records the suspiciousness of
the newly expanded children (Line 18), and updates T that keeps track of the tree (Line 19).
Lastly, the greater suspiciousness over the children are propagated backwards to ancestor
nodes until the root (Line 20), serving as a reference for future node selection.

Termination condition

The main loop in Line 5 of Alg. 2 can be terminated on the satisfaction of any of the following
three conditions:

R(ε) = −∞: This implies that all leaf nodes have been verified successfully (i.e., p̂ > 0 for
all leaves, otherwise by Line 20 R(ε) cannot be −∞), allowing the algorithm to return a
true verdict that certifies the specification satisfaction;
R(ε) = +∞: This implies that a valid counterexample has been found in some leaf node,
and so by Line 20 its suspiciousness of +∞ can be back-propagated to the root node; in
this case, the algorithm can be terminated with a false verdict;
timeout: This occurs when the algorithm exceeds its allocated time budget without
reaching either of the above conclusive verdicts.

The three termination conditions correspond to the three cases of return in Line 7.

4.3 OlivaSA: Simulated-Annealing-Style Exploration of BaB Tree
The greedy strategy in §4.2 exploits the CePO order in the exploration of BaB tree, so it
can efficiently move towards the sub-problems that are more likely to find counterexamples.
However, as it is a greedy strategy, in the case if the CePO order is not sufficiently precise,
the verification process can be easily trapped into a local optimum, and miss the chances of
finding counterexamples in other branches than the one suggested by the CePO order.

To bridge this gap, we propose an approach that adapts the classic framework of simulated
annealing, which not only follows the CePO order, but also takes other branches into account.
As a consequence, during the verification, it strikes a balance between “exploitation” of the
suspicious branches and “exploration” of the less suspicious branches.

“Hill climbing” vs. “Simulated annealing”

Hill climbing is a stochastic optimization technique that aims to find the optimum of a
black-box function. Due to the black-box nature of the objective function, it relies on
sampling in the search space and selects only the samples that optimize the objective function
as the direction to move. Therefore, this is a greedy strategy, similarly to our proposed
approach OlivaGR in §4.2. While OlivaGR does not need to sample the search space, it can
select the sub-problem that is more promising, and thereby move towards the direction that

14 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

Algorithm 3 OlivaSA: The proposed simulated annealing algorithm

Require: A neural network N , input and output specification Φ and Ψ, an approximated
verifier LpVerifier(·), a ReLU selection heuristic H(·), and a hyperparameter λ.

Ensure: A verdict ∈ {true, false, timeout}

1: T ← {ε}
2: ⟨p̂, x̂⟩ ← LpVerifier(N, Φ, Ψ, ε)
3: R(ε)← susp(ε) ▷ a metric for child selection
4: T ← Tmax ▷ temperature
5: if p̂ < 0 and not valid(x̂) then
6: while not reach termination condition do
7: T ← α · T ▷ T is decreased by (1− α)T in each iteration
8: SABaB(ε, N, Φ, Ψ)

9: return

true if R(ε) = −∞
false if R(ε) = +∞
timeout otherwise

10: else

11: return
{

true if p̂ > 0
false if p̂ < 0 and valid(x̂)

12: function SABaB(Γ, N, Φ, Ψ)
13: rk ← H(Γ)
14: if Γ · r+

k ∈ T then
15: ∆p← exp

(
min R(Γ·a)−max R(Γ·a)

T

)
s.t. a ∈ {r+

k , r−
k }

16: Γ∗ ← Γ · a∗ s.t. a∗ ←

randomly choose r+

k or r−
k if rand(0, 1) < ∆p

arg max
a∈{r+

k
,r−

k
}

R(Γ · a) otherwise

17: SABaB(Γ∗, N, Φ, Ψ)
18: else
19: for a ∈ {r+

k , r−
k } do ▷ T expansion via BaB.

20: ⟨p̂, x̂⟩ ← LpVerifier(N, Φ, Ψ, Γ · a) ▷ apply LpVerifier with Γ ∧ a

21: R(Γ · a)← susp(Γ · a) ▷ compute R
22: T ← T ∪ {Γ · a} ▷ add to the tree of Γ ∧ a

23: R(Γ)← arg max
a∈{r+

k
,r−

k
}

R(Γ · a)

is more likely to achieve the objective. As a consequence, they both suffer from the issue of
“local optima”.

In the field of stochastic optimization, simulated annealing [24] is an effective approach
to mitigate the issue of “local optima” in hill climbing. It is inspired by the process of
annealing in metallurgy, in which the temperature is initially high but slowly decreases such
that the physical properties of metals can be stabilized. In simulated annealing, there is
also a temperature that slowly decreases throughout the process: when the temperature is
initially high, it tends to explore the search space and assigns a considerably high probability
to accept a sample that is not the optimal; as temperature goes down, it converges to the
optimum that is likely to be the global one, thanks to the exploration of the search space at

G. Zhang et al. 15

the initial stage.
Our proposed approach OlivaSA adapts simulated annealing to our problem setting, and

the core idea involves that, at the initial stage, we allow more chances of exploring the
branches that are less promising. Then, after we have comprehensively explored the search
space and obtained the information about the suspiciousness of different branches, we tend
to exploit the branches that are more suspicious, namely, that are more likely to contain
counterexamples.

Algorithm details

The OlivaSA algorithm is presented in Alg. 3. It also starts with checking the original
verification problem (Line 2), and enters the loop of tree exploration if the original problem
cannot be solved by LpVerifier (Line 5). However, compared to OlivaSA, it has a notable
difference about the adoption of a temperature T (Line 4) which is a global variable that
keeps decreasing in each loop of the algorithm (Line 7).

In the function SABaB, the temperature T is used when selecting the nodes to proceed.
In the case if the children of the current node Γ have been expanded (Line 14), unlike OlivaGR

that always prefers the most suspicious child, OlivaSA selects a child according to the policy
adapted from the original simulated annealing:

It first computes an acceptance probability ∆p (Line 15), by which it determines whether
the selection of a child that is less promising is acceptable. This probability ∆p is decided
by both the difference of “energy” (defined by the suspiciousness difference between two
children) and the temperature T ;
In the original simulated annealing, a sample that is more promising can be accepted in
any case, and a sample that is less promising can be accepted with the probability ∆p.
In our context, we adapt this policy as follows (Line 16):

If a random value in [0, 1] is less than ∆p, we randomly select a child from the two
children of Γ with the same probability, despite the CePO order over the two children;
Otherwise, we select the more suspicious child following the CePO order.

The selected child will be used as the argument for the recursive call of SABaB, in order to
proceed towards a node whose children are not expanded. After achieving such a node Γ, it
expands the children of Γ (Lines 19-22) by applying LpVerifier to each child of Γ, recording
their suspiciousness (Line 21) and updating the BaB tree (Line 22). Lastly, it back-propagates
the greater suspiciousness over the children until the root (Line 23), similarly to OlivaSA.

This gradual transition from exploration to exploitation helps OlivaSA to avoid premature
convergence while ensuring an eventual focus on the promising branches. The termination
conditions remain the same as in OlivaGR, checking for full verification (R(ε) = −∞),
counterexample discovery (R(ε) = +∞), or timeout. However, by pursuing a higher coverage
of the sub-problem space before being greedy, OlivaSA increases the possibility of discovering
counterexamples that might be missed by the purely greedy strategy of OlivaGR.

▶ Theorem 8. Both OlivaGR and OlivaSA are sound and complete.

Proof. The proofs of soundness and completeness of our approaches are similar to that of
BaB in Lemma 5, so we skip the details. Intuitively, our approaches only introduce an order
of visiting different nodes in BaB tree, but hold all the conditions that are necessary for the
soundness and completeness of BaB. ◀

16 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

5 Experimental Evaluation

5.1 Experiment Settings
Baselines and Metrics

We compare the two versions of Oliva, namely, OlivaGR and OlivaSA, with three state-of-the-art
neural network verification tools αβ-Crown [59, 51], NeuralSAT [11], and BaB-baseline, as
presented in §3.2. The settings of baseline approaches are detailed below:

BaB-baseline is implemented based on the ERAN framework [41, 44], which employs
LP-based triangle relaxation for bounding the output of ReLU functions, and utilizes
DeepSplit [21] as the ReLU selection heuristics for selecting ReLU function to split, i.e.,
H in Alg. 1, Alg. 2, and Alg. 3.
αβ-Crown [59, 51] is applied with its default branch-and-bound settings. Moreover, a
balanced strategy kFSB from FSB [10] is selected as the ReLU selection heuristics for
selecting the ReLU function to split.
NeuralSAT [11] is applied with its default DPLL(T) framework and we select the stabil-
ized optimization as the neuron stability heuristics for ReLU activation pattern search.
Additionally, it is registered with a random attack [8, 56] to reject the easily detected
violation instances at the early stage of verification processes.

For our approaches, the hyperparameters are set as follows: λ = 0.5 (see Def. 6), Tmax = 1
(see Line 4 of Alg. 3) and α = 0.99 (see Line 7 of Alg. 3); in RQ3, we study the impact of
these hyperparameters on the performance of our approaches.

We apply each of the five approaches (including two proposed approaches and three
baseline approaches) to each of the verification problems, and we adopt 1000 secs as our time
budget, following the VNN-COMP competition [30]. If an approach manages to solve the
problem (either verifies the problem or reports a real counterexample), we deem this run as
a solved verification process, and record the time cost for reaching the verification conclusion.
In particular, our OlivaSA is a stochastic approach, namely, its performance is subject to
randomness. To compare its performance with other approaches, in Table 2, Table 3 and
Fig. 5, we only show the performance of one random run; in Fig. 6, we particularly study
the influence of randomness to OlivaSA, by repeating each verification process for 5 times.

Our evaluation metrics include the number of instances solved by an approach and the
time costs for each successful verification process. For comparison of two different approaches,
we also compute the speedup rate, which is the ratio of the time costs of the two approaches.

Moreover, in order to understand whether our counterexample potentiality order works,
we compare the performances of our tools with the baseline approach, respectively for the
problems that are finally certified and the problems that are finally falsified. We further
study the influence of the hyperparameters (including λ in Def. 6 and α that decides the
change rate of temperature in Line 7 of Alg. 3) to the performances of our approaches. In
the implementation of Oliva, we adopt the same approximated verifiers and ReLU selection
heuristics as the BaB-baseline. The code and experimental data of Oliva are available online2.

Datasets and Neural Networks

Our experimental evaluation uses two well-known datasets: MNIST, featuring images of
handwritten digits for classification, and CIFAR-10, featuring images of various real-world

2 https://github.com/DeepLearningVerification/Oliva

https://github.com/DeepLearningVerification/Oliva

G. Zhang et al. 17

Table 1 Benchmark details for the evaluation of verification.

Model Architecture Dataset #Activations # Instances #Images

MNISTL2 2 × 256 linear MNIST 512 100 70
MNISTL4 4 × 256 linear MNIST 1024 78 52

OVAL21BASE 2 Conv, 2 linear CIFAR-10 3172 173 53
OVAL21WIDE 2 Conv, 2 linear CIFAR-10 6244 196 53
OVAL21DEEP 4 Conv, 2 linear CIFAR-10 6756 143 40

Figure 3 The distribution of Certified/Falsified/Unknown cases generated by BaB-baseline.

objects like airplanes, cars, and animals, with networks tasked to identify each class. These
datasets are standard benchmarks that have been widely used in the neural network veri-
fication community and adopted in the VNN-COMP [30], an annual competition in the
community for comparing the performances of different verification tools. We evaluate two
networks trained on MNIST that have fully-connected layers only, and three neural networks
trained on CIFAR-10 that have both convolutional layer and fully-connected layers, with
different network architectures, following common evaluation utilized in ERAN [32, 51] and
OVAL21 [4, 5] benchmarks. More details of these benchmarks are presented in Table 1.

Specifications

In our experiments, all our neural network models are used for image classification tasks,
and all the specifications adopted are about local robustness of the neural network models.
Each input specification defines an ϵ as the threshold for perturbation; and each output
specification requires the expected label to be matched by the original input of the model. In
total, we collected 690 problem instances. Table 1 under the column “# Instances” displays
the number of instances in each model, and “# Images” shows the number of different images
covered by the different instances. Fig. 3 demonstrates the distribution of verification verdicts
across the five models in our benchmark set, according to our experimental results. The
green portion denotes tasks eventually verified (“Certified”), the red portion denotes tasks
that were shown to violate the property (“Falsified”), and the gray portion corresponds to
tasks that remained inconclusive (“Unknown”).

In order to present a meaningful comparison, we need to avoid the verification problems
that are too simple, for which the problem can be solved within a small number of problem
splitting and so there is no need to expand the BaB tree too much. To that end, we perform
a selection of parameters (i.e., ϵ in Def. 2) of input specifications, from a range of 0/255

18 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

Figure 4 The distribution of the tree sizes generated by BaB-baseline.

to 16/255 under the L∞ norm. Our approach involves a binary search-like algorithm to
determine the proper perturbation values for each image, as follows:
1. Initially, we set 0/255 as the lower bound l and 16/255 as the upper bound u, and

calculates the midpoint by taking m = l+u
2 ;

2. We apply BaB-baseline to the verification problem with m as the ϵ, and check the number
of nodes in the BaB tree. If the tree size is greater than 1, we accept it as a candidate
parameter and move to the next image; otherwise, based on the results of verification, we
proceed to update m as like Step 1 and repeat Step 2 as follows:

If the specification is violated, it implies that ϵ is too large and so we set u to be m,
and update m accordingly;
If the specification is satisfied, it implies that ϵ is too small and so we set l to be m,
and update m accordingly.

This process continues until a pre-defined budget is exhausted.
Fig. 4 shows the distribution of node counts across all models for the verification instances.

The distribution confirms that all instances involve multiple tree nodes, ensuring meaningful
sub-problem selection. Notably, more than half of the tree sizes fall within the range of
50-1000 nodes, highlighting the importance of effective sub-problem selection. The complexity
of most instances necessitates careful choice in verification instances.

Software and Hardware Setup

All experiments were conducted on an AWS EC2 instance running a Linux system with 16GB
of memory and an 8-core Xeon E5 2.90 GHz CPU. All tools are developed in Python 3.9, and
we used the GUROBI solver 9.1.2 [19] for the LP-based optimization. For each verification
instance, we set a time budget as 1000 seconds which is consistent with VNN-COMP [30].

5.2 Evaluation
RQ1: Is Oliva more efficient than existing approaches?

In Table 2, we compare the performance of our approach with the state-of-the-art baseline
approaches, BaB-baseline, αβ-Crown and NeuralSAT, across all our verification problems.

We observe that, Oliva shows evident improvement for benchmarks including OVAL21BASE,
OVAL21DEEP and OVAL21WIDE. On the OVAL21BASE, OlivaSA solves 159 instances in an average of
155.29 seconds, far surpassing BaB-baseline (42 instances in 770.7 seconds) and αβ-Crown (58
instances in 641.7 seconds). For OVAL21DEEP, OlivaGR solves 92 instances, compared to 33 by
BaB-baseline and 55 by αβ-Crown, while using less time (250.72 seconds compared to 552.24

G. Zhang et al. 19

Table 2 RQ1 – Overall comparison of different verification approaches, in terms of the number
of solved problem instances and the time costs (in secs).

Model BaB-baseline αβ-Crown Neuralsat OlivaGR OlivaSA

Solved Time Solved Time Solved Time Solved Time Solved Time
MNISTL2 96 126.41 87 51.32 99 32.37 95 96.79 99 57.76
MNISTL4 65 194.74 44 428.03 54 392.04 67 146.31 53 142.72
OVAL21BASE 42 770.7 58 641.7 70 621.21 154 184.96 159 155.29
OVAL21DEEP 33 694.74 55 552.24 55 539.59 92 250.72 87 261.68
OVAL21WIDE 40 733.73 63 557.51 65 533.01 131 240.16 112 288.0

Table 3 RQ1 – Pairwise comparison on the number of additional solved problem instances from
all verification tasks. The number in each cell implies the number of problem instance solved by the
approach of the row, but not solved by the approach of the column.

BaB-Baseline αβ-Crown NeuralSAT OlivaGR OlivaSA

BaB-Baseline 0 80 59 8 13
αβ-Crown 111 0 11 23 39
NeuralSAT 126 47 0 30 46

OlivaGR 271 255 226 0 40
OlivaSA 247 242 213 11 0

seconds). The difference is even more pronounced for OVAL21WIDE, where OlivaGR solves 131
instances in an average of 240.16 seconds, greatly exceeding both BaB-baseline (40 instances
in 733.73 seconds) and αβ-Crown (63 instances in 557.51 seconds).

For MNISTL2 benchmarks that have simpler architectures compared to OVAL21, BaB-baseline
performs well with 96 instances solved, while OlivaGR achieves 99 solved instances with a faster
average time (57.76 seconds). As the size of the network increases to MNISTL4, αβ-Crown
declines to 44 instances, while OlivaGR achieves 67 solved instances with an average time of
146.31 seconds. These results highlight the effectiveness and efficiency of Oliva, compared to
the baseline approaches.

Table 3 presents a pairwise comparison, in which each cell indicates the number of problem
instances solved by the approach listed in the row, but not solved by the approach listed
in the column. Namely, we can perform pairwise comparison between two approaches by
comparing the values in a pair of cells symmetric to the diagonal of Table 3. Compared to
baseline approaches, our approaches demonstrate superior performances, as indicated by the
green area that shows the number of additional problems solved by our approaches by not by
baseline approaches; in comparison, the numbers in the red area, that includes the number
of problems solved by baseline approaches, but not solved by our approaches, are much less.
By comparing the performances between OlivaGR and OlivaSA, we find that OlivaGR slightly
outperforms OlivaSA, in that it solves 40 additional problems than OlivaSA, although there
are 11 problems OlivaSA solves but OlivaGR does not do. That said, it also demonstrates
the complementary strengths between different approaches, namely, there is no one global
optimal approach that can solve all the problems, and so it is worthwhile to try different
approaches when one approach does not work.

In Fig. 5, we take a further comparison between Oliva and BaB-baseline, and draw a
scatter plot to show the individual instances for which Oliva outperform BaB-baseline. The
x-axis represents the time taken by the BaB-baseline method in seconds, while the y-axis
shows the speedup ratio of Oliva over BaB-baseline. This ratio is calculated as τBaB(i)/τOliva(i),

20 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

0 200 400 600 800 1000
Time(s)

0

5

10

15

20

25
Sp

ee
d-

up
 R

at
io

 (B
aB

-b
as

el
in

e/
Ol

iv
a) Method

OlivaGR

OlivaSA

Ratio=1

(a) MNISTL2

0 200 400 600 800 1000
Time(s)

0

5

10

15

20

25

Sp
ee

d-
up

 R
at

io
 (B

aB
-b

as
el

in
e/

Ol
iv

a) Method
OlivaGR

OlivaSA

Ratio=1

(b) MNISTL4

0 200 400 600 800 1000
Time(s)

0

10

20

30

40

50

60

70

80

Sp
ee

d-
up

 R
at

io
 (B

aB
-b

as
el

in
e/

Ol
iv

a) Method
OlivaGR

OlivaSA

Ratio=1

(c) OVAL21BASE

0 200 400 600 800 1000
Time(s)

0

10

20

30

40

50

60

70

80

Sp
ee

d-
up

 R
at

io
 (B

aB
-b

as
el

in
e/

Ol
iv

a) Method
OlivaGR

OlivaSA

Ratio=1

(d) OVAL21DEEP

0 200 400 600 800 1000
Time(s)

0

10

20

30

40

50

60

70

80

Sp
ee

d-
up

 R
at

io
 (B

aB
-b

as
el

in
e/

Ol
iv

a) Method
OlivaGR

OlivaSA

Ratio=1

(e) OVAL21WIDE

Figure 5 RQ1 – Comparison of time cost and speedup ratio of the two variants OlivaGR and
OlivaSA of our proposed approach Oliva over BaB-baseline.

where τBaB(i) and τOliva(i) denote the time taken by BaB-baseline and Oliva on the instance
i, respectively. The blue dots and orange crosses represent all of the individual problem
instances. The red line is the threshold at 1× speedup, above which the ratio distinguishes
that Oliva outperforms than BaB-baseline.

G. Zhang et al. 21

Table 4 RQ1 – Statistics of speedup ratios of two variants of Oliva over BaB-baseline.

Model Tool name Min Max Median Mean

Overall OlivaGR 0.02 80.97 2.21 7.27
OlivaSA 0.03 75.13 2.18 7.57

MNISTL2
OlivaGR 0.11 22.02 1.04 2.49
OlivaSA 0.11 25.07 1.12 2.50

MNISTL4
OlivaGR 0.02 5.84 1.10 1.38
OlivaSA 0.03 8.62 1.17 1.47

OVAL21BASE
OlivaGR 1.07 80.97 6.93 13.73
OlivaSA 1.28 75.13 7.02 13.96

OVAL21DEEP
OlivaGR 1.01 54.23 2.80 5.37
OlivaSA 1.03 57.96 2.34 5.31

OVAL21WIDE
OlivaGR 0.81 68.44 2.95 7.48
OlivaSA 0.78 74.83 2.55 7.60

Across all the models, it can be seen that a significant number of blue dots (OlivaGR)
and orange crosses (OlivaSA) appear above the red line, indicating that Oliva outperforms
the BaB-baseline. Notably, around the 1000-second mark on the x-axis, there are multiple
instances where the speedup ratio is up to 80×, meaning that Oliva can solve these problems
more than 80 times faster than the BaB-baseline. This trend is particularly evident in OVAL21
models (OVAL21BASE, OVAL21DEEP, and OVAL21WIDE) that have relatively complex architectures.

In Table 4, we summarize the statistical information of speedup ratios of our approaches
over BaB-baseline. Overall, the two variants of Oliva achieve consistent performance improve-
ments, with median speedups exceeding 2 times and mean gain values around 7 times.

Similar to simulated annealing, our tool OlivaSA is a stochastic approach that is subject
to randomness. To analyze the impact of randomness on the performance of OlivaSA, we
conduct five independent attempts with all the verification problems and compare them with
the deterministic OlivaGR. Since OlivaSA incorporates a simulated annealing approach that
makes probabilistic decisions during sub-problem exploration, different runs may explore the
verification space in different orders, potentially leading to variations in performance.

The results are presented in Fig. 6, in which we only present the problems that are either
solved by OlivaGR or OlivaSA. Overall, the performance comparisons between OlivaGR and
OlivaSA are consistent across different attempts, and are concentrated in the 0.5-2× speedup
bracket. This result suggests that the randomness in the simulated annealing approach does
not substantially impact the effectiveness of OlivaSA. Notably, in Fig 6c and Fig 6d, with the
nature of the randomness, OlivaSA exhibits the strength in finding solutions in the time cost
of 100-600s that might be difficult to solve by the deterministic approach of OlivaGR.

RQ2: How effective is Oliva in handling violated and certified problem instances,
respectively?

Fig. 7 shows the performance advantage of OlivaGR and OlivaSA over BaB-baseline across differ-
ent verification tasks. For violated instances (i.e., confirmed counterexample by BaB-baseline
and Oliva), OlivaGR and OlivaSA consistently demonstrate superior efficiency, evidenced by
lower median time costs and smaller interquartile ranges across all models.

22 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

(a) SA attempt 1 (b) SA attempt 2 (c) SA attempt 3

(d) SA attempt 4 (e) SA attempt 5

Figure 6 The distributions of conclusive instances by the variant of OlivaSA, in different speedups
and time costs compared with OlivaGR. The black dashed line indicates the performance of OlivaGR:
above the black dashed line, OlivaGR outperforms OlivaSA; below it, OlivaSA performs better.

In Fig. 7a, Oliva shows notably lower median time costs and compressed interquartile
ranges compared to BaB-baseline, indicating more consistent and faster execution. In
OVAL21BASE and OVAL21DEEP (Fig. 7c and Fig. 7d), OlivaGR and OlivaSA sub-problem selection
strategy is highly effective in problem instances where counterexamples exist. For OVAL21BASE,
OlivaGR achieves a median speed-up ratio of approximately 2.5× for violated instances,
and OlivaSA with reaching up to 4× faster execution than BaB-baseline. Similarly, for
OVAL21DEEP, the median speed-up ratio is around 3×, with peak performance showing up to
5× acceleration.

In contrast, for certified instances (i.e., confirmed robust), two variants of Oliva are
generally on par with the BaB-baseline, indicating that in these cases, the performance of
Oliva is comparable with BaB-baseline, which does not introduce overhead costs. This is
expected, because in BaB, most of the time consumption is devoted to the problem solving
process for each sub-problem. While our proposed approach introduces little overhead in the
selection of the sub-problems to proceed with, the overhead is almost invisible.

RQ3: How does the hyperparameter λ and α in the order influences the
performance of Oliva?

Fig. 8 highlights the impact of the λ parameter on the speedup of OlivaGR over BaB-baseline
for the verification task on OVAL21WIDE model. In this experiment, we randomly select 20%
of the instances, including 13 conclusive and 12 unknown cases, based on the BaB-baseline
performance. The chosen instances are at varying levels of time consumption. This analysis
examines λ values ranging from 0.0 to 1.0, and summarizes the speedup ratios of OlivaGR

G. Zhang et al. 23

Violated instance Certified instance
0

2

4

6

8

10
Sp

ee
du

p
Ra

tio
 (B

aB
-b

as
el

in
e

/ O
liv

a)

4.29

5.99

1.00 1.18

Method
OlivaGR

OlivaSA

Mean
Ratio=1

(a) MNISTL2

Violated instance Certified instance
0

2

4

6

8

10

Sp
ee

du
p

Ra
tio

 (B
aB

-b
as

el
in

e
/ O

liv
a)

1.31 1.54
1.07 1.20

Method
OlivaGR

OlivaSA

Mean
Ratio=1

(b) MNISTL4

Violated instance Certified instance
0

2

4

6

8

10

Sp
ee

du
p

Ra
tio

 (B
aB

-b
as

el
in

e
/ O

liv
a)

3.07

5.32

1.40 1.50

Method
OlivaGR

OlivaSA

Mean
Ratio=1

(c) OVAL21BASE

Violated instance Certified instance
0

2

4

6

8

10

Sp
ee

du
p

Ra
tio

 (B
aB

-b
as

el
in

e
/ O

liv
a)

2.86

4.05

1.38 1.46

Method
OlivaGR

OlivaSA

Mean
Ratio=1

(d) OVAL21DEEP

Violated instance Certified instance
0

2

4

6

8

10

Sp
ee

du
p

Ra
tio

 (B
aB

-b
as

el
in

e
/ O

liv
a)

1.36
1.96

0.84 0.86

Method
OlivaGR

OlivaSA

Mean
Ratio=1

(e) OVAL21WIDE

Figure 7 RQ2 – Comparison between BaB-baseline and Oliva for violated and certified verification
problem instances.

under different λ values. The findings reveal that, first, the performances of OlivaGR under
different λ are relatively stable, mostly outperforming BaB-baseline. This implies that both
of the attributes, including the level of problem splitting and the verifier assessment, are
effective in guiding the space exploration. Moreover, the performance slightly improves as λ

increases from 0.0 to 0.5, peaking at a speedup of 4.69. Beyond λ = 0.5, speedup declines,
indicating 0.5 as the optimal value. In terms of the average improvement, the speedup vary
from 3.39 to 4.69 and is not negligible, which emphasizes the importance of careful tuning of
λ to maximize the efficiency of OlivaGR in verification tasks.

Then, we settle λ = 0.5 as the default value to evaluate the temperature reduction

24 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

0 1 2 3 4 5 6 7 8

=0

=0.2

=0.4

=0.5
(Default)

=0.6

=0.8

=1

3.39

4.04

4.24

4.69

4.23

4.21

4.13

Mean
Ratio=1

Figure 8 RQ3 – Speedup over BaB-baseline under different hyperparameter λ values on verification
tasks with OVAL21WIDE.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

=0.95

=0.96

=0.97

=0.98

=0.99

=0.999

0.89

0.92

0.94

0.96

0.94

1.07

Mean
Ratio=1

Figure 9 RQ3 – Speedup over OlivaGR under hyperparameter α values on verification tasks with
OVAL21WIDE.

parameter α, which ranges from 0.95 to 0.999, as suggested by [24]. Fig. 9 compares the
speedup of OlivaSA over OlivaGR. The hyperparameter α determines the speed of “temperature”
decreases during the verification processes, directly affecting the balances between exploration
and exploitation. First, by the medians, we find that OlivaSA under all α outperform OlivaGR.
Specifically, with α = 0.999, OlivaSA achieves better performance than OlivaGR in average,
which is a very slow cooling schedule (α close to 1) that allows the algorithm to thoroughly
explore the search space early on before transitioning to exploitation. As α decreases, the
temperature drops more rapidly, giving the algorithm less time to explore before converging
on promising areas. The lower performance ratios seen with α = 0.95− 0.98 suggest that
this faster cooling schedule may be too aggressive, causing OlivaSA to commit too quickly to
certain branches of the verification tree without adequately exploring alternatives. By our
inspection of experimental results, the relative low mean values are caused by some specific
cases, for which OlivaSA does not perform well. Notably, when selecting α = 0.99, while its
mean ratio of 0.94 might seem underwhelming at a first glance, its median performance is
notably strong compared to other α values, representing a balanced probability that allows
sufficient exploration while maintaining steady progress toward exploitation. In practical
verification tasks, as consistency can be as a valuable property, α = 0.99 can thus be preferable
despite its lower mean ratio.

G. Zhang et al. 25

6 Related Work

Neural Network Verification

Neural network verification has been extensively studied in the past few years, giving birth
to many practical approaches [47, 23, 14, 22, 41, 44, 43, 29, 49, 39]. Approximated verifiers
are perferable due to their efficiency, and many works aim to seek for tighter bounds
for approximation refinement [2, 46, 40, 32, 31, 54, 27, 36, 15, 13, 9]. Some works aim
to refine the approximation [55, 34, 20, 12, 60] by exploiting information from (spurious)
counterexamples (known as CEGAR approach). In contrast, our approach does not aim to
refine the approximation of the backend verifiers, but we estimate the probability of finding
counterexamples in different sub-problems to efficiently explore the sub-problem space.

Problem Splitting Strategies in BaB

Problem splitting [38, 26, 16] is an important component in the BaB workflow, which is
critical to the efficiency of verification [4]. Early research considers splitting input space by
its dimensions [50, 1, 37]; however, that can lead to an exponential growth in the number of
sub-problems w.r.t. the number of dimensions, which is intractable especially for applications
that have high-dimensional data, such as image classification. More recently, many works
start to perform problem splitting by decomposing ReLU functions, which can achieve
better performance [5] and scales better than input domain splitting. In these works, the
ReLU selection strategy that decides the next neuron (i.e., the ReLU function) to be split is
important and there emerge many effective strategies including DeepSplit [21] (which we
adopted), BaBSR [5] and FSB [10]. Compared to those works, our approach is different and is
orthogonal to them, because instead of selecting ReLU, we select the sub-problems to proceed
with, which changes the naive breadth-first strategy of BaB in visiting the sub-problems.
Notably, our work is in line with [57]; however, unlike [57] that targets incremental neural
network verification, we target the problem of classic neural network verification, and we
adopt a different stochastic optimization framework, i.e., simulated annealing.

Testing and Attacks

Testing is another effective quality assurance for neural networks, and it has also been
extensively studied, such as [35, 33, 17, 45]. A similar line of works are adversarial attacks,
that aim to generate adversarial examples [18, 3, 53, 58, 6] to fool the neural networks.
While these approaches are efficient, they cannot provide rigorous guarantee on specification
satisfaction, when they cannot find a counterexample, because they solve the problem by
checking infinitely many single inputs in the input space. In comparison, our approach is
sound, in the sense that if there does not exist a counterexample in the network, we can
finally reach the certification of the network. This is because by our problem splitting, we
deal with finitely many sub-problems.

7 Conclusion and Future Work

In this paper, we propose an approach Oliva with two variants OlivaGR and OlivaSA in order
to achieve high efficiency of neural network verification. Oliva introduces a severity order
over the sub-problems produced by BaB. This order, called counterexample potentiality,
estimates the suspiciousness of each sub-problem in the sense how likely it contains a counter-
example, based on both the level of problem splitting and the assessment from approximated

26 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

verifiers that signify how far a sub-problem is from being violated. By prioritizing the
sub-problems with higher counterexample potentiality, Oliva can efficiently reach verification
conclusions—either finding a counterexample quickly or certifying the neural network without
significant performance degradation. Specifically, our two variants of Oliva implement dif-
ferent strategies: i) OlivaGR greedily exploits the most suspicious sub-problems; ii) OlivaSA,
inspired by simulated annealing, strikes a balance between exploitation of the promising
sub-problems and exploration of the sub-problems that are less promising. Our experimental
evaluation across 5 neural network models and 690 verification problems demonstrates that
Oliva can achieve up to 80× speedup, compared to the state-of-the-art baseline approaches.
Moreover, we also show the breakdown comparison for the certified problems and for the
falsified problems, and we demonstrate that the performance advantages of the proposed
approach indeed come from the strategy guided by counterexample potentiality.

To the best of our knowledge, our work is the first that exploits the power of stochastic
optimization in neural network verification, by taking the sub-problems as the search space.
In future, we plan to do more exploration in this direction, e.g., trying other stochastic
optimization algorithms, such as genetic algorithms, and comparing the performances of
different strategies, in order to deliver better verification approaches.

References
1 Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. Optimization and

abstraction: a synergistic approach for analyzing neural network robustness. In Proceedings of
the 40th ACM SIGPLAN conference on programming language design and implementation,
pages 731–744, 2019. doi:10.1145/3314221.3314614.

2 R Anderson, J Huchette, C Tjandraatmadja, and JP Vielma. Strong convex relaxations and
mixed-integer programming formulations for trained neural networks (2018), 1811.

3 Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square
attack: a query-efficient black-box adversarial attack via random search. In European conference
on computer vision, pages 484–501. Springer, 2020. doi:10.1007/978-3-030-58592-1_29.

4 Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and
M. Pawan Kumar. Branch and bound for piecewise linear neural network verification.
CoRR, abs/1909.06588, 2019. URL: http://arxiv.org/abs/1909.06588, arXiv:1909.06588,
doi:10.48550/arXiv.1909.06588.

5 Rudy Bunel, P Mudigonda, Ilker Turkaslan, Philip Torr, Jingyue Lu, and Pushmeet Kohli.
Branch and bound for piecewise linear neural network verification. Journal of Machine
Learning Research, 21(2020), 2020. URL: https://jmlr.org/papers/v21/19-468.html.

6 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
2017 ieee symposium on security and privacy (sp), pages 39–57. Ieee, 2017. doi:10.1109/SP.
2017.49.

7 Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial
neural networks. In Deepak D’Souza and K. Narayan Kumar, editors, Automated Technology
for Verification and Analysis, pages 251–268. Springer Int. Publishing, 2017. doi:10.1007/
978-3-319-68167-2_18.

8 Moumita Das, Rajarshi Ray, Swarup Kumar Mohalik, and Ansuman Banerjee. Fast falsification
of neural networks using property directed testing. arXiv preprint arXiv:2104.12418, 2021.
doi:10.48550/arXiv.2104.12418.

9 Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan,
Jonathan Uesato, Rudy R Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy S
Liang, et al. Enabling certification of verification-agnostic networks via memory-efficient
semidefinite programming. Advances in Neural Information Processing Systems, 33:5318–5331,
2020.

https://doi.org/10.1145/3314221.3314614
https://doi.org/10.1007/978-3-030-58592-1_29
http://arxiv.org/abs/1909.06588
https://arxiv.org/abs/1909.06588
https://doi.org/10.48550/arXiv.1909.06588
https://jmlr.org/papers/v21/19-468.html
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.48550/arXiv.2104.12418

G. Zhang et al. 27

10 Alessandro De Palma, Rudy Bunel, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet
Kohli, Philip HS Torr, and M Pawan Kumar. Improved branch and bound for neural network
verification via lagrangian decomposition. arXiv preprint arXiv:2104.06718, 2021.

11 Hai Duong, Linhan Li, ThanhVu Nguyen, and Matthew B. Dwyer. A DPLL(T) framework
for verifying deep neural networks. CoRR, abs/2307.10266, 2023. arXiv:2307.10266, doi:
10.48550/arXiv.2307.10266.

12 Hai Duong, Dong Xu, ThanhVu Nguyen, and Matthew B Dwyer. Harnessing neuron stability
to improve dnn verification. Proceedings of the ACM on Software Engineering, 1(FSE):859–881,
2024. doi:10.1145/3643765.

13 Krishnamurthy Dj Dvijotham, Robert Stanforth, Sven Gowal, Chongli Qin, Soham De, and
Pushmeet Kohli. Efficient neural network verification with exactness characterization. In
Uncertainty in artificial intelligence, pages 497–507. PMLR, 2020.

14 Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In
Automated Technology for Verification and Analysis: 15th Int. Symp., ATVA 2017, Proceedings
15, pages 269–286. Springer, Oct. 2017.

15 Mahyar Fazlyab, Manfred Morari, and George J Pappas. Safety verification and robustness
analysis of neural networks via quadratic constraints and semidefinite programming. IEEE
Transactions on Automatic Control, 67(1):1–15, 2020.

16 Claudio Ferrari, Mark Niklas Muller, Nikola Jovanovic, and Martin Vechev. Complete verifica-
tion via multi-neuron relaxation guided branch-and-bound. arXiv preprint arXiv:2205.00263,
2022. doi:10.48550/arXiv.2205.00263.

17 Xiang Gao, Ripon K Saha, Mukul R Prasad, and Abhik Roychoudhury. Fuzz testing based
data augmentation to improve robustness of deep neural networks. In Proceedings of the
acm/ieee 42nd international conference on software engineering, pages 1147–1158, 2020.
doi:10.1145/3377811.3380415.

18 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In 3rd Int. Conf. on Learning Representations (ICLR’15), San Diego,
CA, United States, 2015. Int. Conf. on Learning Representations, ICLR.

19 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

20 Karthik Hanumanthaiah and Samik Basu. Iterative counter-example guided robustness
verification for neural networks. In International Symposium on AI Verification, pages 179–187.
Springer, 2024. doi:10.1007/978-3-031-65112-0_9.

21 Patrick Henriksen and Alessio Lomuscio. Deepsplit: An efficient splitting method for neural
network verification via indirect effect analysis. In IJCAI, pages 2549–2555, 2021. doi:
10.24963/ijcai.2021/351.

22 Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep
neural networks. In Computer Aided Verification: 29th Int. Conf., CAV 2017, Part I 30, pages
3–29. Springer, July 2017. doi:10.1007/978-3-319-63387-9_1.

23 Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neural networks. In Rupak Majumdar and Viktor
Kunčak, editors, Computer Aided Verification, pages 97–117. Springer Int. Publishing, 2017.
doi:10.1007/978-3-319-63387-9_5.

24 Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated
annealing. science, 220(4598):671–680, 1983. doi:10.1126/science.220.4598.671.

25 Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, Mykel J
Kochenderfer, et al. Algorithms for verifying deep neural networks. Foundations and Trends®
in Optimization, 4(3-4):244–404, 2021. doi:10.1561/2400000035.

26 Jingyue Lu and M Pawan Kumar. Neural network branching for neural network verification.
arXiv preprint arXiv:1912.01329, 2019.

27 Zhongkui Ma, Jiaying Li, and Guangdong Bai. Relu hull approximation. Proceedings of the
ACM on Programming Languages, 8(POPL):2260–2287, 2024. doi:10.1145/3632917.

https://arxiv.org/abs/2307.10266
https://doi.org/10.48550/arXiv.2307.10266
https://doi.org/10.48550/arXiv.2307.10266
https://doi.org/10.1145/3643765
https://doi.org/10.48550/arXiv.2205.00263
https://doi.org/10.1145/3377811.3380415
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-031-65112-0_9
https://doi.org/10.24963/ijcai.2021/351
https://doi.org/10.24963/ijcai.2021/351
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1561/2400000035
https://doi.org/10.1145/3632917

28 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

28 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In 6th Int. Conf. on Learning
Representations (ICLR’18), Vancouver, Canada, 2018.

29 Christoph Müller, Gagandeep Singh, Markus Püschel, and Martin T Vechev. Neural network
robustness verification on gpus. CoRR, abs/2007.10868, 2020.

30 Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T Johnson. 3rd
international verification of neural networks competition (VNN-COMP 2022): Summary and
results. arXiv preprint arXiv:2212.10376, 2022.

31 Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vec-
hev. Precise multi-neuron abstractions for neural network certification. arXiv preprint
arXiv:2103.03638, 2021.

32 Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev.
Prima: general and precise neural network certification via scalable convex hull approximations.
ACM on Programming Languages, 6(POPL):1–33, 2022. doi:10.1145/3498704.

33 Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. Tensorfuzz: De-
bugging neural networks with coverage-guided fuzzing. In International Conference on Ma-
chine Learning, pages 4901–4911. PMLR, 2019. URL: http://proceedings.mlr.press/v97/
odena19a.html.

34 Matan Ostrovsky, Clark Barrett, and Guy Katz. An abstraction-refinement approach to verify-
ing convolutional neural networks. In International Symposium on Automated Technology for
Verification and Analysis, pages 391–396. Springer, 2022. doi:10.1007/978-3-031-19992-9_
25.

35 Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In 26th Symp. on Operating Systems Principles, pages 1–18,
2017. doi:10.1145/3132747.3132785.

36 Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. Advances in neural information processing systems, 31,
2018.

37 Vicenc Rubies-Royo, Roberto Calandra, Dusan M Stipanovic, and Claire Tomlin. Fast neural
network verification via shadow prices. arXiv preprint arXiv:1902.07247, 2019.

38 Zhouxing Shi, Qirui Jin, Zico Kolter, Suman Jana, Cho-Jui Hsieh, and Huan Zhang.
Neural network verification with branch-and-bound for general nonlinearities. arXiv pre-
print arXiv:2405.21063, 2024.

39 Zhouxing Shi, Yihan Wang, Huan Zhang, J Zico Kolter, and Cho-Jui Hsieh. Efficiently
computing local lipschitz constants of neural networks via bound propagation. Advances in
Neural Information Processing Systems, 35:2350–2364, 2022.

40 Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin Vechev. Beyond the
single neuron convex barrier for neural network certification. Advances in Neural Information
Processing Systems, 32, 2019.

41 Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast
and effective robustness certification. In Advances in Neural Information Processing Systems,
volume 31, 2018.

42 Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vec-
hev. Fast and effective robustness certification. Advances in neural information pro-
cessing systems, 31, 2018. URL: https://proceedings.neurips.cc/paper/2018/hash/
f2f446980d8e971ef3da97af089481c3-Abstract.html.

43 Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. Boosting robustness
certification of neural networks. In Int. Conf. on learning representations, 2018.

44 Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain
for certifying neural networks. ACM on Programming Languages, 3(POPL):1–30, 2019.
doi:10.1145/3290354.

https://doi.org/10.1145/3498704
http://proceedings.mlr.press/v97/odena19a.html
http://proceedings.mlr.press/v97/odena19a.html
https://doi.org/10.1007/978-3-031-19992-9_25
https://doi.org/10.1007/978-3-031-19992-9_25
https://doi.org/10.1145/3132747.3132785
https://proceedings.neurips.cc/paper/2018/hash/f2f446980d8e971ef3da97af089481c3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f2f446980d8e971ef3da97af089481c3-Abstract.html
https://doi.org/10.1145/3290354

G. Zhang et al. 29

45 Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing of
deep-neural-network-driven autonomous cars. In 40th Int. Conf. on Software Engineering,
pages 303–314, 2018. doi:10.1145/3180155.3180220.

46 Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, Krunal Kishor Patel,
and Juan Pablo Vielma. The convex relaxation barrier, revisited: Tightened single-neuron
relaxations for neural network verification. Advances in Neural Information Processing Systems,
33:21675–21686, 2020.

47 Vincent Tjeng, Kai Y Xiao, and Russ Tedrake. Evaluating robustness of neural networks with
mixed integer programming. In Int. Conf. on Learning Representations, 2018.

48 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh. Incremental
verification of neural networks. ACM on Programming Languages, 7(PLDI):1920–1945, 2023.
doi:10.1145/3591299.

49 Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Effi-
cient formal safety analysis of neural networks. Advances in neural information pro-
cessing systems, 31, 2018. URL: https://proceedings.neurips.cc/paper/2018/hash/
2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html.

50 Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal secur-
ity analysis of neural networks using symbolic intervals. In 27th USENIX Security Symp.
(USENIX Security 18), pages 1599–1614, 2018. URL: https://www.usenix.org/conference/
usenixsecurity18/presentation/wang-shiqi.

51 Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico
Kolter. Beta-crown: Efficient bound propagation with per-neuron split constraints for
neural network robustness verification. Advances in Neural Information Processing Sys-
tems, 34:29909–29921, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/
fac7fead96dafceaf80c1daffeae82a4-Abstract.html.

52 Haoze Wu, Omri Isac, Aleksandar Zeljic, Teruhiro Tagomori, Matthew L. Daggitt, Wen Kokke,
Idan Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min
Zhang, Ekaterina Komendantskaya, Guy Katz, and Clark W. Barrett. Marabou 2.0: A versatile
formal analyzer of neural networks. In Arie Gurfinkel and Vijay Ganesh, editors, Computer
Aided Verification - 36th International Conference, CAV 2024, Montreal, QC, Canada, July
24-27, 2024, Proceedings, Part II, volume 14682 of Lecture Notes in Computer Science, pages
249–264. Springer, Springer, 2024. URL: https://doi.org/10.1007/978-3-031-65630-9_13,
doi:10.1007/978-3-031-65630-9_13.

53 Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L
Yuille. Improving transferability of adversarial examples with input diversity. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 2730–2739,
2019. doi:10.1109/CVPR.2019.00284.

54 Xiaoyong Xue, Xiyue Zhang, and Meng Sun. kprop: Multi-neuron relaxation method for neural
network robustness verification. In International Conference on Fundamentals of Software
Engineering, pages 142–156. Springer, 2023. doi:10.1007/978-3-031-42441-0_11.

55 Pengfei Yang, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue, and
Lijun Zhang. Improving neural network verification through spurious region guided refinement.
In Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems, pages
389–408. Springer, 2021. doi:10.1007/978-3-030-72016-2_21.

56 Yang Yu, Hong Qian, and Yi-Qi Hu. Derivative-free optimization via classification. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016. doi:10.1609/
aaai.v30i1.10289.

57 Guanqin Zhang, Zhenya Zhang, H.M.N. Dilum Bandara, Shiping Chen, Jianjun Zhao, and
Yulei Sui. Efficient incremental verification of neural networks guided by counterexample
potentiality. Proc. ACM Program. Lang., 9(OOPSLA1), April 2025. doi:10.1145/3720417.

58 Huan Zhang, Shiqi Wang, Kaidi Xu, Yihan Wang, Suman Jana, Cho-Jui Hsieh, and Zico
Kolter. A branch and bound framework for stronger adversarial attacks of relu networks.

https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3591299
https://proceedings.neurips.cc/paper/2018/hash/2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html
https://doi.org/10.1007/978-3-031-65630-9_13
https://doi.org/10.1007/978-3-031-65630-9_13
https://doi.org/10.1109/CVPR.2019.00284
https://doi.org/10.1007/978-3-031-42441-0_11
https://doi.org/10.1007/978-3-030-72016-2_21
https://doi.org/10.1609/aaai.v30i1.10289
https://doi.org/10.1609/aaai.v30i1.10289
https://doi.org/10.1145/3720417

30 Efficient Neural Network Verification via Order Leading Exploration of BaB Trees

In International Conference on Machine Learning, pages 26591–26604. PMLR, 2022. URL:
https://proceedings.mlr.press/v162/zhang22ae.html.

59 Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient
neural network robustness certification with general activation functions. Advances in Neural
Information Processing Systems, 31, 2018. URL: https://proceedings.neurips.cc/paper/
2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html.

60 Zhe Zhao, Yedi Zhang, Guangke Chen, Fu Song, Taolue Chen, and Jiaxiang Liu. Cleverest:
accelerating cegar-based neural network verification via adversarial attacks. In International
Static Analysis Symposium, pages 449–473. Springer, 2022. doi:10.1007/978-3-031-22308-2_
20.

https://proceedings.mlr.press/v162/zhang22ae.html
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://doi.org/10.1007/978-3-031-22308-2_20
https://doi.org/10.1007/978-3-031-22308-2_20

	1 Introduction
	2 Overview of The Proposed Approach
	2.1 Verification Problem and BaB Approach
	2.2 The Proposed Approach

	3 Preliminaries
	3.1 Neural Network Verification Problem
	3.2 Branch-and-Bound (BaB) – State-of-the-Art Verification Approach

	4 Oliva: The Proposed Verification Approach
	4.1 Counterexample Potentiality Order
	4.2 OlivaGR: Greedy Exploration of BaB Tree
	4.3 OlivaSA: Simulated-Annealing-Style Exploration of BaB Tree

	5 Experimental Evaluation
	5.1 Experiment Settings
	5.2 Evaluation

	6 Related Work
	7 Conclusion and Future Work

