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Abstract
By respecting program control-flow, flow-sensitive pointer analysis promises more precise results than
its flow-insensitive counterpart. However, existing heap abstractions for C and C++ flow-sensitive
pointer analyses model the heap by creating a single abstract heap object for each memory allocation.
Two runtime heap objects which originate from the same allocation site are imprecisely modelled
using one abstract object, which makes them share the same imprecise points-to sets and thus reduces
the benefit of analysing heap objects flow-sensitively. On the other hand, equipping flow-sensitive
analysis with context-sensitivity, whereby an abstract heap object would be created (cloned) per
calling context, can yield a more precise heap model, but at the cost of uncontrollable analysis
overhead when analysing larger programs.

This paper presents TypeClone, a new type-based heap model for flow-sensitive analysis. Our
key insight is to differentiate concrete heap objects lazily using type information at use sites within
the program control-flow (e.g., when accessed via pointer dereferencing) for programs which conform
to the strict aliasing rules set out by the C and C++ standards. The novelty of TypeClone lies
in its lazy heap cloning: an untyped abstract heap object created at an allocation site is killed
and replaced with a new object (i.e. a clone), uniquely identified by the type information at its
use site, for flow-sensitive points-to propagation. Thus, heap cloning can be performed within a
flow-sensitive analysis without the need for context-sensitivity. Moreover, TypeClone supports
new kinds of strong updates for flow-sensitive analysis where heap objects are filtered out from
imprecise points-to relations at object use sites according to the strict aliasing rules. Our method is
neither strictly superior nor inferior to context-sensitive heap cloning, but rather, represents a new
dimension that achieves a sweet spot between precision and efficiency. We evaluate our analysis by
comparing TypeClone with state-of-the-art sparse flow-sensitive points-to analysis using the 12
largest programs in GNU Coreutils. Our experimental results also confirm that TypeClone is more
precise than flow-sensitive pointer analysis and is able to, on average, answer over 15% more alias
queries with a no-alias result.
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1 Introduction

Pointer analysis aims to determine the objects which a pointer may point to at runtime. It is
an enabling technology which forms a basis for other program analysis tasks such as compiler
optimisation [28, 13], program slicing [42, 43], enforcing control-flow integrity [23, 16], and
software security analysis [38, 32].

1.1 Background
Flow-sensitivity is an essential precision dimension of pointer analysis. Unlike flow-insensitive
analysis which considers instructions to be unordered, flow-sensitive analysis accounts for
program execution order to better approximate runtime behaviour and achieve a more
precise result. Traditional flow-sensitive points-to analysis computes and maintains points-to
relations at each program point. These points-to relations are propagated along the program’s
control-flow graph (CFG) by solving an iterative data-flow problem until a fixed point is
reached.

In recent years, there have been significant advances in making flow-sensitive analysis for
C and C++ programs more efficient. Rather than propagating all relations to/from each
program point on the CFG, Sparse analysis [19, 20], a flow-sensitive and context-insensitive
analysis, pre-computes over-approximated value-flows (def-use chains) to produce a value-
flow graph upon which the main phase analysis can propagate points-to relations sparsely.
This reduces both time and space overhead while maintaining precision. Selective flow-
sensitive analysis [30] performs strong updates for stack and global variables at stores where
flow-sensitive singleton points-to sets are available, but falls back to flow-insensitive results
otherwise, making a trade between efficiency and precision. Sparse analysis incorporates
these strong updates. As an alternative to whole-program analysis, demand-driven flow-
sensitive analysis [39] aims to answer points-to queries flow-sensitively by only analysing
specific parts of a program with CFL-reachability on the pre-computed value-flow graph.

1.2 Motivation and insights
Most recent advances in C/C++ flow-sensitive pointer analysis focus on improving efficiency.
Apart from those which employ expensive context-sensitivity, existing solutions exclusively
use an allocation-site-based heap abstraction where an abstract object is created per memory
allocation site to represent the set of concrete objects created at that allocation site during
runtime. This is especially coarse for heap-intensive programs when allocation sites are
contained within allocation wrapper functions [7] since any pointers pointing to objects
originating from such wrapper functions will be regarded as having a may-alias relation
despite originating in different contexts at runtime. Thus the heap abstraction significantly
reduces the benefit of flow-sensitivity by restricting most of the precision improvement to
stack and global variables only. For example, given two concrete heap objects o1 and o2 which
originate from the same allocation wrapper and are accessed along two different control-flow
branches, the flow-sensitive points-to results of the heap objects, and of any pointers which
point to them, would be as (im)precise as flow-insensitive results since the heap abstraction
would treat both concrete objects as a single abstract object. Whenever a single allocation
wrapper is used exclusively, the heap abstraction is as precise as having one abstract object
represent all concrete heap objects allocated by the program.

Developing a precise and efficient flow-sensitive heap abstraction is challenging since
the infinite-sized heap needs to be partitioned into a finite a number of abstract objects.
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A straightforward solution is to equip flow-sensitive analysis with context-sensitivity. A
context-sensitive analysis performs heap cloning based on calling contexts: a new heap object
(a clone) is created for each calling context reaching the object’s allocation site. However,
given the billions of calling contexts in large programs [44], adding context-sensitivity to
flow-sensitive analysis incurs uncontrollable overhead even with k-limiting enabled [3].

Rather than heap cloning according to calling context, we would like to investigate the
use of type information and the initialisation of an object’s type (e.g. through dereferencing a
pointer to that object) to perform heap cloning. Our key insight is based on the strict aliasing
rules laid out by the C [2, §6.5 ¶7] and C++ [1, §6.10 ¶8] standards whereby a pointer
may only access an object with a compatible type (or else, the program exhibits undefined
behaviour). For example, reading an object of type float through a pointer of type int *
is undefined behaviour. Thus, a pointer of type int * and a pointer of type float *, for
example, cannot be referring to the same object when being dereferenced. We can then use
such type information to “separate” concrete objects from within an abstract object (of the
allocation-site-based abstraction) into multiple abstract objects, each used for accesses of a
specific type. More concretely, an untyped heap object o can be cloned into multiple typed
objects based upon the accesses (or dereferences) of o. Therefore, type-based heap cloning
could more precisely distinguish heap objects while avoiding expensive context-sensitive heap
modeling.

1.3 Existing efforts and limitations
Type-based heap modelling [24, 26, 37] has been used in strongly typed languages, such as
Java, to produce a cost-effective heap abstraction for context-sensitive but flow-insensitive
pointer analysis. However, there are very few attempts at type-based pointer analysis for C
and C++ [5, 7, 13]. C and C++ introduce new challenges:

C and C++ are weakly typed so reasoning about the types of objects, especially heap
objects, is difficult.
High-level C/C++ type information is not preserved in the intermediate representation
(IR) of modern compilers, like Clang/LLVM [14], upon which static analyses typically
operate on.
C and C++ allow for the address of fields to be taken and for pointer arithmetic within
an object, which means fields’ types must too be resolved during the analysis.

It is hard to design a fully sound pointer analysis, incorporating types, for non-conforming
programs which violate the strict aliasing rules. Generally, a fully sound analysis would be
unscalable or imprecise almost to the point of uselessness on its own [31]. Type-based alias
analysis (TBAA) [13] made the initial attempt at exploiting the strict aliasing assumption
(or its equivalent in Modula-3) to produce a fast alias analysis. The almost stateless nature
of TBAA makes it especially useful in resolving alias queries that would otherwise require
inter-proecedural analysis to non-trivially answer. Modern compilers like LLVM and GCC
implement TBAA behind the -fstrict-aliasing flag (enabled by default). In reality,
programs which wish to safely benefit from optimisations enabled by TBAA must conform
to the strict aliasing rules. Programs which fail to do so either risk miscompilation (since
the program exhibits undefined behaviour the compiler assumes is not present) or must
notify the compiler that the program violates the strict aliasing rules and do without those
optimisations. Violating these rules (or invoking any other undefined behaviour) is typically
strongly discouraged, particularly where safety is a factor, as in the MISRA C and C++
coding standards, for example.

ECOOP 2020
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Recently, structure-sensitive analysis [7] (hereon referred to as cclyzer-ss) presented
a type-based flow-insensitive points-to analysis that enhances the precision of Andersen’s
analysis [4]. cclyzer-ss lazily infers the types of heap objects by leveraging LLVM type casts
to filter out spurious field derivations (i.e., field derivations introduced by static imprecision
that can never happen during runtime).

1.4 Our solution
Inspired by TBAA and cclyzer-ss, the scope of this work is to produce a more precise
flow-sensitive heap model for C and C++ programs which follow the strict aliasing rules.
We propose TypeClone, a flow- (and field-) sensitive analysis with a new type-based heap
abstraction which yields better precision than a traditional flow-sensitive analysis. We aim
to perform lazy heap cloning by incorporating lightweight type information within standard
flow-sensitive pointer analysis. Rather than performing heap cloning per calling context for
each allocation, for untyped memory object o allocated at program point `, we lazily clone
to create typed object ot at each of its type initialisation points `′ where the object o has
a type t assumed. To maintain soundness, each clone ot is back-propagated to any pointer
that may have actually been accessing the concrete objects now represented by ot through o.

Intuitively, the type initialisation point is treated as the real allocation site during our
lazy heap cloning, thus distinguishing different sets of concrete objects where necessary in
a lazy rather than eager manner. From the type initialisation point `′ forward, we only
propagate the clone object ot rather than the untyped object o. Not only are untyped objects
prevented from propagating past type initialisation points like `′, but any object of type
t accessed by a pointer with incompatible element type t′ will be strongly updated (i.e.
killed, filtered) because such a points-to relation is impossible in a program which adheres
to the strict aliasing rules and must be a result of static imprecision. This reduces the
number of spurious objects in points-to sets during points-to resolution, especially when
a killed object would have otherwise created spurious field sub-objects via field-sensitivity.
This gives us a flow-sensitive analysis that is still scalable yet more precise than that which
uses standard heap abstractions. We see our work more as an addition to flow-sensitive
analysis rather than as competition to other heap cloning techniques like context-sensitivity.
Our technique is neither strictly superior nor inferior to context-sensitive analysis and can
work with context-sensitivity to achieve a more precise result. Our key contributions are
summarised as follows:

We present TypeClone, a flow-sensitive pointer analysis which can perform lazy heap
cloning using types without context-sensitivity for C and C++ programs which do not
violate the strict aliasing rules.
We present new forms of strong updates, namely type-based semi-strong updates and
type-based strong updates, which improve precision.
We have implemented TypeClone and compared it to sparse flow-sensitive analysis.
We have found that TypeClone can answer over 15% more alias queries with a no-alias
result, on average, than Sparse.

2 A motivating example.

Figure 1a gives an example of a common heap allocation wrapper extracted from GNU
Coreutils [18] and usage of that wrapper. This example aims to demonstrate the key idea
of TypeClone and compare it with existing C and C++ points-to analyses: a recent
flow-insensitive analysis (cclyzer-ss) and a flow-sensitive and context-insensitive analysis
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1 int main(void) {
2 int *p = (int *)xmalloc(4);
3 *p = 1;
4 float *q = (float *)xmalloc(4);
5 *q = 1.0;
6 // Alias(p, q)?
7 }
8

9 void *xmalloc(size_t n) {
10 void *x = malloc(n);
11 if (!x && n != 0) xalloc_die();
12 return x;
13 }

(a) Usage of GNU Coreutils malloc wrapper.

Analysis Points-to relations `6: Alias(p,q)

cclyzer-ss
{o, oint, ofloat}∈ pt(p)

True
{o, oint, ofloat}∈ pt(q)

Sparse
{o} ∈ pt(`2–, p)

True
{o} ∈ pt(`4–, q)

TypeClone

{o, oint, ofloat}∈ pt(`2, p)

False
{oint} ∈ pt(`3–, p)
{o, oint, ofloat}∈ pt(`4, q)
{ofloat} ∈ pt(`5–, q)

(b) Points-to relations.

Figure 1 A motivating example.

(Sparse). Points-to results are shown in Figure 1b. Flow-sensitive analyses maintain
different points-to information for the same pointer at different program points, so pt takes
an extra argument indicating the program point (`– means ` onwards). The results show
that TypeClone is more precise than cclyzer-ss and Sparse when performing an alias
query on p and q at line 6 and maintains only one object at lines 3 and 5 onward.

cclyzer-ss performs heap cloning at cast instructions, i.e., p = (t) q, such that the
untyped object o that q points to is cloned to create a new object ot with type t. The ot

is then propagated back to the allocation site of o in order to maintain soundness since
some preceding program points may have become aliases of q, through points-to relations
with the untyped object, before the clone was created. cclyzer-ss’s main goal is to enable
more precise field-sensitivity through these typed heap objects. Given a field constraint, i.e.,
p = &q→f , a new field is derived only when (1) q points to a typed object ot, and (2) the
type of q is t∗. This prevents the generation of spurious field objects. cclyzer-ss can only
improve precision by preventing the generation of spurious field objects since every clone
is back-propagated to its original allocation site which causes every object which originally
pointed to the untyped object from that allocation site to point to every typed clone. For
example, the clone object oint, created at line 2, is back-propagated to line 10, which makes
pointer q, soundly but imprecisely, also point to oint at every program point.

Sparse [20] performs flow-sensitive points-to analysis using allocation-site-based heap
modeling. Therefore, the program only has one heap object o which is then pointed to by
both pointers, p and q, at line 6.

TypeClone clones heap objects lazily only at the type initialisation point in a flow-
sensitive manner. A type initialisation point is any program point in which an object must
be of a certain type (or one of a set of types) for the program to be legal (i.e., not exhibit
undefined behaviour). In this example, the pointer dereferences at lines 3 and 5 must be
referring to objects of type int and float, respectively, for the program to avoid undefined
behaviour. This is in contrast to cclyzer-ss which clones at cast instructions eagerly. The
cloned objects are then propagated back to their allocation sites for the same reason that
cclyzer-ss does and so x at line 10 would then point to the two cloned objects (as well as
the original untyped object). When the clone objects oint and ofloat are re-propagated to

ECOOP 2020
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Table 1 Domains and LLVM-like instructions used by our pointer analysis.

Analysis domains LLVM-like instruction set
` ∈ L instruction labels
t, • ∈ T types
k ∈ C constants
i ∈ S stack virtual registers
g ∈ G global variables
p, q, r, x, y ∈ P = S ∪ G top-level variables
ȯ ∈ O abstract objects
o.fk ∈ F abstract field objects
a, o ∈ A = O ∪ F address-taken variables
v ∈ V = P ∪A program variables

Stk/Glob p = &o
Heap p = malloco

Phi p = φ(q, r)
Field p = &q→fk

Cast p = (t) q
Load p = ∗q
Store ∗p = q

Call p = q(r1, . . . , rn)
FunEntry fun(r1, . . . , rn)
FunExit retfun p

line 3 following the control-flow, ofloat will be filtered by TypeClone’s type-based strong
updates since our analysis only expects an int-typed object (oint) to be accessed by the
dereference *p. Similarly, a type-based strong update is also performed at line 5 to kill the
incompatible typed object oint. Thus, TypeClone is able to more precisely answer the alias
query at line 6 than both Sparse and cclyzer-ss.

3 Program representation and type model

This section describes the program representation, our type model (based on the C and C++
standards), and the value-flow representation used for our flow-sensitive analysis.

3.1 Program representation

Like [7, 20, 30, 39], we perform our pointer analysis on top of the LLVM IR of a program.
The instructions relevant to our analysis and the domains are given in Table 1. The set of
all variables V is separated into two subsets: A = O ∪F which contains all possible abstract
objects and their fields (i.e., address-taken variables of a pointer), and P which contains
top-level variables, including stack virtual registers (symbols starting with % in LLVM) and
global variables (symbols starting with @). Top-level variables in P are explicit and directly
accessed, and address-taken variables in A are implicit and indirectly accessed at LLVM
Load or Store instructions through top-level variables. Since our analysis is type-based, we
require types: t ∈ T . • ∈ T is the undefined type which is necessary because heap objects
can be untyped before being initialised.

After SSA (static single assignment) conversion, given that p, q, r1, . . . , rn ∈ P and o ∈ A,
a program is represented by ten types of instructions: (1) eight types of instructions which
appear in the body of a function: p = &o (allocates memory for a stack or global object),
p = malloco (allocates memory for a heap object), p = φ(q, r) (selects the value of a variable
at the joint point of branching control-flow), p = &q→fk (retrieves a pointer pointing to
the field of a struct object), p = ∗q (reads the value of an object), ∗p = q (writes the value
of an object), p = (t) q (casts a pointer to type t), and p = q(r1, . . . , rn) (calls function q
with arguments r1, . . . , rn), and, (2) a FunEntry instruction fun(r1, . . . , rn) containing the
parameters of fun, and a FunExit instruction retfun p representing the unique return of
fun. LLVM pass UnifyFunctionExitNodes is executed before pointer analysis to ensure
that every function has only one FunExit instruction. Top-level variables are put directly
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1 p = &a;
2 a = &b;
3

4

5 q = malloc(...);
6 *q = &c;
7

8

9 *p = *q;
10

(a) C code fragment.

1 p = &a;
2 x1 = &b;
3 *p = x1;
4

5 q = malloc(...);
6 x2 = &c;
7 *q = x2;
8

9 x3 = *q;
10 *p = x3;

(b) Corresponding LLVM IR.

Figure 2 C code and its corresponding LLVM IR.

 q = malloc(...);  // o

p = &a;  

x1 = &b;  

*p = x1;

x2 = *q;  

*p = x2;  

ℓ1:
ℓ2:
ℓ3:

ℓ4:

ℓ7:
ℓ8:

a1 = !(a0)

a2 = !(a1)

"(o2)

*q = x2;  
x2 = &c;  

o2 = !(o1)

ℓ5:
ℓ6: [a]

[o]

Andersen's points-to information
pts(p) = {a}
pts(q) = {o}

(a) An intra-procedural value-flow example.

bar() {
       p = malloc(...);  // o
            
              !(o1)
         foo(p);
          o2 = "(o1)

          !(o2)
         z = *p;
}

foo(x) {

   

}
       !(o2)

ℓ1:

ℓ2:

ℓ3: ℓ7:

ℓ4:

ℓ6:

      o1 = "(o0)

      o2 = "(o1)[a]

Indirect Value-flow 

y = malloc(..); // o'ℓ5:
   *x  = y;

[a]

[a]

[a]

[a]

Andersen's points-to information
pts(p) = pts(x) = {o}

(b) An inter-procedural value-flow example.

Figure 3 Intra-procedural and inter-procedural value-flow graph examples.

in SSA form, while address-taken variables are only accessed indirectly via Load or Store
instructions. Parameter passing and returning are treated as Copys.

C++ object allocation, like S *x = new S(), is generally translated into two instructions:
an allocation instruction, like x = malloco, which returns an untyped object, and a call to a
constructor, like S(x), which calls S’s constructor to initialise the newly allocated object.
For pointer arithmetic, as in q = p+ j, if p points to an object o, we conservatively assume
that q can point anywhere within o. This is based on the assumption that pointer arithmetic
cannot cross the boundary of an object. A pointer pointing to an object produced through
an integer cast aliases every other pointer (i.e. it points to every object). We treat arrays
monolithically such that accessing any element of an array is the same as accessing the entire
array object meaning our analysis is array-insensitive. This is an orthogonal dimension of
precision.

Given p, q, x1, x2, x3 ∈ P and a, b, c ∈ A, Figure 2 shows a code fragment and its
corresponding LLVM partial SSA form. Note that address-taken variable a can only be
indirectly accessed by introducing a top level pointer, for example through x1 in store *p = x1.
Complex statements like *q = &c and *p = *q are decomposed into basic instructions by
introducing top-level pointers like x2 and x3.

ECOOP 2020
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3.2 Value-flow representation for flow-sensitive analysis
Unlike a flow-insensitive analysis which ignores program execution order, a flow-sensitive
analysis accounts for the program’s control flow. Traditional flow-sensitive points-to analysis
computes and maintains data-flow facts (points-to relations) at each program point. These
data-flow facts are propagated along the program’s inter-procedural control-flow graph
(ICFG) until a fixed point is reached [12, 30]. However, in time and space, computing and
propagating the points-to information on the ICFG is costly.

To accelerate performance, the analysis is run on top of a sparse value-flow graph (VFG)
instead of the ICFG [20, 33, 36, 39]. Intuitively, the VFG is a sparse def-use graph where each
node represents a program statement and edges represent a def-use chain (i.e. value-flow) of
a program variable. The notion of sparsity comes from the omission of statements irrelevant
to the value-flow of a variable such that an edge acts as a “jump” directly from the definition
of a variable to its use thus reducing redundant points-to propagation along the control-flow.

The value-flow of a top-level variable (which has a unique definition in the partial SSA
form) is directly available without pointer analysis. Such value-flows are called direct value-
flows. A directed edge from node x to node y represents a value-flow relation: a variable
defined at node x is used at node y. On the other hand, value-flows of address-taken
variables (which are not in partial SSA form) are obtained by building the memory SSA
form following [11, 20] because their uses, at loads for example, could be defined indirectly
at multiple stores

Figure 3 shows an intra- and an inter-procedural example based on the code in Figure 2.
For both, a fast and imprecise flow-insensitive Andersen’s analysis [4] is used to annotate
indirect memory accesses at program points like loads, stores, and callsites. The results
of that Andersen’s analysis are shown in the two boxes in Figures 3a and 3b. Now, let us
consider the intra-procedural example in Figure 3a specifically. Firstly, we annotate store
instructions like ∗p = x1 with a function a = χ(a) for each variable a ∈ A which may be
pointed to by p. This represents a potential value-flow (i.e., def and use of a) at the store. If
a can be strongly updated, then a receives the value on the right-hand side of the store (x1)
and the old contents in a are killed. Otherwise, a weak update takes place by adding the
right-hand side to a’s old contents [30]. Secondly, we annotate load instructions like x2 = ∗q
with a function µ(o) for each variable o ∈ A that may be pointed to by q to represent a
potential use of o at the load. Thirdly, we convert all address-taken variables into SSA form,
treating each µ(o) as a use of o and each o = χ(o) as both a def and a use of o. Finally, we
obtain the indirect value-flows for o ∈ A: for a use of o, identified as on (where n represents
the version), at load or store instruction `, with its unique definition at store `′, `′ o−→ `

represents the potentially indirect value-flow of o from `′ to `. This is exemplified by `3
a−→ `8

and `6
o−→ `7 in Figure 3a.

Figure 3b shows an inter-procedural value-flow example. In addition to what is done
in the intra-procedural case, we compute the side-effects of a function call by applying a
lightweight inter-procedural mod-ref analysis [41, §4.2.1]. A given callsite, `, is annotated
with µ(a), or a = χ(a), if a may be read, or modified, respectively, inside the callees of ` as
discovered by Andersen’s pointer analysis. Additionally, appropriate χ and µ operators are
also added to the FunEntry and FunExit instructions of these callees in order to mimic
parameter passing and returning of address-taken variables.

To handle read side-effects within a function, we add a µ call before appropriate callsites
to represent potential uses of µ’s argument. The corresponding FunEntry instruction
is annotated with an appropriate χ call. For example, to represent potential uses of o in
foo in Figure 3b, µ(o) is added before the callsite at `2, and foo’s FunEntry instruction
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1 struct S {
2 int i;
3 void *v;
4 };
5 class C : public S {
6 float f;
7 virtual void foo(void) { }
8 };
9 union U {

10 long l;
11 int i;
12 };

(a) C++ code fragment of type declarations.

S

int

char

C

U

long float void *

(b) Corresponding type graph.

Figure 4 A type graph and the corresponding C++ code it was generated from. The open
triangle arrow represents an inheritance relation, the dashed arrow represents a first-field relation,
and the solid arrow represents relations derived from the strict aliasing rules of C and C++.

at `4 is annotated with o = χ(o) to receive the values of o passed from `2. Similarly, for
modification side-effects within a function, a call to χ is added after appropriate callsites to
receive potentially modified values, and the corresponding functions’ FunExit instructions
are annotated with a µ call. In Figure 3b, o = χ(o) is added after the callsite at `2 to handle
potential modification of o in foo, and foo’s FunExit instruction at `7 is annotated with
µ(o). Finally, as in the intra-procedural example, all variables in µ and χ are renamed and
converted into memory SSA form when connecting their def-use relations.

3.3 Type model
The types of stack and global objects are static and are determined at their allocation sites
whereas dynamically allocated heap objects (e.g., through malloc or C++’s new) are untyped.
Primarily, the type of a heap object is manifested when accessed through the dereferencing
of a pointer.

Before introducing the type model for our analysis, we first define the subtyping relations
that may appear in a program. We use a type graph to represent subtyping relations between
different types in a program. The type graph is a directed acyclic graph where each node
represents a type in the target program and each edge from t′ to t represents one of three
subtyping relations: (1) t′ inherits from t, (2) the first field of struct type t′ has type t, and (3)
subtyping relations derived from the strict aliasing rules of C and C++. All types appearing
in the program are placed into the type graph, but we treat arrays and pointers as equivalent
for this purpose and, in conformance with the strict aliasing rules, ignore signedness and
qualifiers (e.g., int is deemed equivalent to const unsigned int).

Figure 4 illustrates the three subtyping relations on an example type graph (Figure 4b)
generated from the code in Figure 4a. Class C inherits from struct S which has an int as its
first field. Unions treat all their members as their first field, as is the case with U and its int
and long members. Finally, all types which do not have any outgoing edges are connected
to the char type in line with the strict aliasing rules which allow any object to be accessed
by dereferencing a pointer to a char. Finally, we say that t′ is a subtype of t, denoted as
t ≺ t′, if t is reachable from t′ in the type graph.
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Our analysis expects target programs to conform to our type model. We define the type
model of our analysis with the following rules R1–R5, adopted from the provenance and
strict aliasing rules of C18 [2] and C++17 [1].

R1. An abstract heap object’s initial type is undefined (•) until a non-void type is potentially
assigned.

R2. Any pointer may point to any object regardless of its type (through pointer casting, for
example). However, through a pointer of type t∗ only objects whose type is t′, such that
t ≺ t′, may be read.

R3. For pointer arithmetic q = p+ j, q will either point within the object pointed to by p,
or at one past the last element of the object if it is an array object.

R4. An object may not access any of its virtual methods until it is passed to the corresponding
constructor.

R5. An object’s type can be changed to a type that is not a transitive base (i.e., reuse).

R1–R4 are easy to understand. R5 describes object reuse in C and C++. An example use
case is to reuse an already allocated object rather than freeing that object and performing
a new allocation. This is commonly done using placement new in C++. Another use case
would be custom allocators in C++ using a statically allocated pool of memory, e.g., given a
static buffer (or allocated otherwise), char buf[100], a placement new operation, new(buf)
T(), would not allocate new memory, but would call T’s constructor with buf as the this
argument to initialise the underlying object with type T. In C, placement new is unavailable.
Outside well know patterns like pool allocators, object reuse is an uncommon feature that is
error-prone since it may make pointers illegal to dereference, unless strict conditions are met.
This is similar to introducing dangling pointers through deallocation except that deallocation
is usually more explicit (e.g., through the presence of free and delete) and more commonly
understood by the programmer than the possible ways of performing reuse. We discuss
object reuse in more detail in Section 4.2.

4 TypeClone approach

We present a base analysis in Section 4.1 that will achieve our goals of typing heap objects
and performing flow-sensitive heap cloning without context-sensitivity. The base analysis
assumes no direct object reuse. We then extend the base analysis to support direct object
reuse in Section 4.2.

4.1 Base analysis

This section introduces our base analysis. Central to our analysis is typing the usually
untyped abstract objects. We use the notation ot to indicate that the type of object o is t and
we use o without the type subscript when the type is irrelevant. For stack and global objects,
the type is assigned at allocation, whereas for heap objects, the type is undefined (denoted
as •) at allocation. According to our type model in Section 3.3, pointers with element type t
can only read from objects whose underlying type t′ satisfies t ≺ t′. Therefore, such pointer
accesses are an indication of the type of an object and we can use this information for heap
cloning. Writes to an object are another indication of the type of an object: an object written
to through a pointer with element type t is assigned type t. Figure 5 presents the inference
rules for the base analysis and an explanation of each of the rules follows.
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[STACK/GLOBAL]

` : p = &o t = T (p)

ot̃ ∈ pt(`, p)

[HEAP]

` : p = malloco

o• ∈ pt(`, p)

[LOAD]

` : p = ∗q `′′
q−→ ` `′

o−→ `

ot ∈ pt(`′′, q) o′ = init(T (q), ot)

pt(`′, o′) ⊆ pt(`, p)

[STORE]

` : ∗p = q `′
o−→ ` `′′

p−→ ` `′′′
q−→ `

ot ∈ pt(`′′, p) o′ = init(T (p), ot)

pt(`′′′, q) ⊆ pt(`, o′)

init(t, ot′) =


ot̃ if t′ ≡ • [INITIALISE]

ot′ if t̃ ≺ t′ [TBWU]

ot̃ if t′ ≺ t̃ ∧ t′ 6≡ t̃ ∧ h(ot′) [TBSSU]

∅ otherwise [TBSU]

[BACK-PROPAGATE]

` : p = malloco ot newly cloned

ot ∈ pt(`, p)

[SU/WU]

` : ∗p = _ `′
o−→ `

o ∈ A \ kill(`, p)

pt(`′, o) ⊆ pt(`, o)

kill(`, p) =


{o′} if pt(`, p) ≡ {o′} ∧ o′ ∈ singletons
A if pt(`, p) ≡ ∅
∅ otherwise

[FIELD]

` : p = &q→fk `′
q−→ ` o ∈ pt(`′, q)

o′ = init(T (q), o) t = type of t::fk

(o′.fk)t ∈ pt(`, p)

[FF-NOT-IN-PT]

o ∼̇ o′ o ∈ pt(`, v)

o′ ∈ pt(`, v)

[FF-EQ-PT]

o′ ∼̇ o′′ o ∈ pt(`, o′)

o ∈ pt(`, o′′)

[PHI]

` : p = φ(q, r) `′
q−→ ` `′′

r−→ `

pt(`′, q) ∪ pt(`′′, r) ⊆ pt(`, p)

[CAST]

` : p = (t) q `′
q−→ ` o ∈ pt(`′, q)

o ∈ pt(`, p)

[CALL]

` : _ = q(. . . , r, . . . ) µ(o) `′ : fun(. . . , r′, . . . ) o=χ(o)
ofun ∈ pt(`′′, q) `′′

q−→ ` `∗
r−→ ` `? o−→ `

pt(`∗, r) ⊆ pt(`′, r′) pt(`?, o) ⊆ pt(`′, o)

[RET]

` : p = q(. . . ) o=χ(o) `′ : retfun p′ µ(o)

ofun ∈ pt(`′′, q) `′′
q−→ ` `∗

p′
−→ ` `? o−→ `

pt(`∗, p′) ⊆ pt(`, p) pt(`?, o) ⊆ pt(`, o)

T (v) : V 7→ T v’s type.
pt(`, v) : L × V 7→ 2A v’s points-to set after `.
`

v−→ `′ : L × V × L v’s value flow.
h(o) : A 7→ Bool o is a heap object.

t̃ : T 7→ T The element (pointee) type of t.
t ≺ t′ : T × T t′ is a transitive subtype of t.
• : T The undefined type.

Figure 5 Inference rules for the base analysis. We use a box to indicate that a new cloned
object is created if it does not already exist.
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4.1.1 Memory allocation ([HEAP] [STACK/GLOBAL])
The [HEAP] and [STACK/GLOBAL] rules handle the allocation of heap, stack and global
objects. Allocation is handled as in standard flow-sensitive pointer analysis except that we
associate a type with the newly allocated objects. At allocation time, the type of a heap
object is unknown and will be determined later through usage of the object. Thus an untyped
object o• is propagated. The types of stack and global objects, however, are known, so a
type (t in ot) is immediately assigned.

4.1.2 Direct and indirect propagation ([PHI] [CAST] [CALL] [RET])
Rules [PHI] and [CAST] act as copies, performing trivial direct propagation. Both simply
propagate the points-to information of the pointer on the right hand side of an assignment
to the pointer on the left hand side. In the case of rule [PHI], the points-to sets of q and r
are added to that of p. In the case of rule [CAST], the points-to set of q is added to that of p
as a Cast instruction acts like a copy. Despite the type-based nature of our analysis type
casting has no effect on actual points-to relations since any pointer can point to any object
except when that pointer is used in certain ways (recall R2 of our type model).

Direct inter-procedural points-to propagation is done via the [CALL] and [RET] rules.
Function targets are resolved on-the-fly during points-to analysis to more precisely discover
callee functions at indirect callsites. Points-to values from the actual arguments at the callsite
are then propagated to the corresponding formal parameters of each callee. The points-to
information of an address-taken variable o is propagated via indirect value-flows (Section 3.2)
with the χ and µ annotations shown in the two rules.

Indirect propagation is the propagation of address-taken variables (objects in A) in
the VFG. Indirect edges are labelled with address-taken variables, as determined by the
pre-analysis, which are then propagated along those edges. Since the Andersen’s analysis
used to construct the VFG has no notion of typed objects, the edges are labelled with
objects according to the allocation-site-based heap model (i.e. the original untyped objects).
To remedy this, on the fly, when an indirect edge is labelled o, we propagate points-to
information for all clones of o defined at the source of the indirect edge through the indirect
propagation of o. For example, the propagation of the points-to information of both ot and
ot′ from ` and `′ would be through the indirect edge labelled with o, i.e. ` o−→ `′. Another
way to resolve this is to augment the pre-analysis with type-based heap cloning and then
indirect edges would be labelled with the appropriate typed objects. We forego this method
for brevity and generality.

4.1.3 Loads and stores ([LOAD] [STORE] [SU/WU])
Load and Store instructions, through the [LOAD] and [STORE] rules, are handled in the
same way as in a standard sparse flow-sensitive analysis [20] except that object initialisation
(via init, described in Sections 4.1.4 and 4.1.5) is performed on the objects pointed to by the
dereferenced pointers. The return value of the init function is then operated on rather than
the object in the dereferenced pointer’s points-to set (which was passed in to init).

The [SU/WU] rule performs standard singleton-based strong and weak updates [20, 30]
for object o, pointed to by p, at Store instruction ∗p = q. A weak update merges the
points-to set of o with that of q and propagates that result onward. When o is a singleton, a
strong update is performed. Strong updates discard o’s old pointees, making its points-to set
equivalent to that of q [30]. Singleton-based strong updates cannot take place upon local
variables within recursion, arrays (treated monolithically), and heap objects. In addition to
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1 class S { ... };
2 class T : public S { int f; };
3 S *smalloc(size_t size) {
4 return (S*)malloc(size);
5 }
6 int main(void) {
7 T *t = (T*)smalloc(sizeof(T));
8 t->f = ...;
9 }

Figure 6 An example where object cloning would be performed by cclyzer-ss but not by
TypeClone.

these singleton-based strong updates, TypeClone performs type-based semi-strong updates
(Section 4.1.5.2) and type-based strong updates (Section 4.1.5.3) by leveraging our typing of
abstract objects.

4.1.4 Object cloning

Object initialisation occurs whenever pointer access to an object makes an assumption
regarding that object’s type. The Load, Store, and Field instructions make assumptions
about the type of the object being accessed. The init function used by rules [LOAD], [STORE],
and [FIELD] handles object cloning through four different cases: [INITIALISE], [TBWU],
[TBSSU], and [TBSU]. It takes two arguments: the type t of the pointer pointing to the
object of interest and the object ot′ being accessed by the pointer. init may produce new
objects if they do not already exist (i.e., it may clone objects). The potential to create a new
object is denoted by a box and the˜operator, as in t̃, returns the element type of a pointer
such that it would return int * when applied to int **, for example.

4.1.4.1 Object initialisation ([INITIALISE])

In the [INITIALISE] case, an untyped object (t′ = •) is accessed by a pointer of type t.
TypeClone will initialise the type of the heap object to be t̃ based on the assumption that
the underlying type of the object is of type t̃ or a subtype of t̃. We can then propagate the t̃
typed object and stop propagating the untyped object thus differentiating it from objects of
different types originating at the same allocation site. In C and C++, for example, code
snippet int *i = (int *)malloc(4); *i = 1; makes an assumption about the type of
the object returned by malloc–that it is of type int or a subtype of int–because pointer i
cannot be accessing an object of any other type per our model.

Our approach to object cloning differs from that of cclyzer-ss in that it is less eager.
When a pointer is cast to a pointer to another type, but never dereferenced as that pointer
type, our approach would not perform object cloning whereas cclyzer-ss would. For
example, consider Figure 6 where T is a derivative type of S. Despite a pointer to the
allocated object o being cast to type S *, it is never dereferenced as such, and so we do not
need to clone to create oS.
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4.1.4.2 Back propagation ([BACK-PROPAGATE])

In the [INITIALISE] case, a new object is created and solely returned by init, causing the
caller to stop propagating the original object, and to only propagate the clone. This ignores
aliases made before the object was initialised and assigned a type. Figure 7 exemplifies this
where pointer a is assigned pointer i before the pointed-to heap object is initialised at line
3. At lines 1 and 2, i would point to the untyped object o•, a would also point to o• at
lines 2 and 3, and i would correctly point (only) to the typed object oint at line 3 but would
simultaneously share an incorrect no-alias relation with a.

1 int *i = (int *)malloc(...);
2 void *a = i;
3 *i = 1;

Figure 7 An example of an alias being made before initialisation occurs.

The [BACK-PROPAGATE] rule ensures that pre-initialisation aliases, like a in Figure 7,
also point to the clone by back-propagating the newly created clone to the original object’s
allocation site, like [6, 7]. This is a cause of imprecision, since more than just pre-initialisation
aliases will now point to the clone. Some precision is then recouped by subsequent typed-based
strong and semi-strong updates.

4.1.5 Type-based weak, semi-strong, and strong updates
The init function acts upon types, hence we say it performs type-based updates. These
updates are divided into type-based weak updates, type-based semi-strong updates, and
type-based strong updates.

4.1.5.1 Type-based weak updates ([TBWU])

The [TBWU] case represents the basic case, type-based weak updates, or TBWUs. In this case,
either the object’s type exactly matches the pointer’s element type (t̃ ≡ t′), or the object’s
type is a derived type of the pointer’s element type (an upcast took place). Both situations
are covered by the statement t̃ ≺ t′. Since this access asserts the legality of such a pointer
accessing such an object and makes no new assumptions about the object’s type, it is simply
propagated onward like a standard flow-sensitive analysis would and no cloning occurs.

4.1.5.2 Type-based semi-strong updates ([TBSSU])

The first case, [INITIALISE], results in a type-based semi-strong update, or TBSSU. It is
type-based since the mechanism by which it occurs relies on type information, and it is
semi-strong in that it kills one object and replaces it with another.

The [TBSSU] case, which models access after a downcast occurs, also results in a type-
based semi-strong update. TypeClone assumes that any pointer access resulting from a
downcast (i.e., p = (t) q where ˜T (p) ≺ ˜T (q)) is legal since we consider all input programs to
conform to the strict aliasing rules of C and C++ (as implied by our type model). Regardless
of whether an analysis accepts illegal programs or not, this is also the more conservative way
of handling access after a downcast (with respect to soundness). From another point of view,
we cannot know if the original type we assigned is the actual type of the object, and that
the original type initialisation was actually an access through an upcast. We test that ot′ is
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1 typedef struct { int i; } S;
2 typedef struct { struct S s; long l; } T1;
3 typedef struct { struct S s; float f; } T2;
4 void *smalloc(size_t size) {
5 S *base = (S *)malloc(size);
6 base->i = 1;
7 return base;
8 }
9 int main(void) {

10 T1 *p = (T1 *)smalloc(sizeof(T1));
11 p->l = 2;
12 T2 *q = (T2 *)tmalloc(sizeof(T2));
13 q->f = 3.0;
14 }

Figure 8 An example of an abstract object being initialised as two different “derivative” types,
T1 and T2, after it has been initialised as the “base” type S.

a heap object (h(ot′)) because non-heap objects have a declared type and cannot be changed
(until we discuss reuse in Section 4.2).

Like the [INITIALISATION] case, we create a new object of type t̃ since an assumption
about the type of the object is being made (that its real type is t̃ or a derivative of t̃, both of
which being derived types of t′). It is tempting to change the object’s type instead of cloning
but this can cause unsoundness as the abstract object ot′ may have been representing both
concrete objects of type t′ and concrete objects of type t̃ or other derivatives.

Handling downcasts explicitly gives a more accurate representation of an object’s type
which is necessary for virtual method resolution, and allows for better strong updates. To
illustrate the latter, consider the C code in Figure 8, which implements a rudimentary form of
inheritance. Within wrapper function smalloc, all allocated objects are initialised to “base”
type S. Callers of smalloc can then access the returned object as a “derivative” type T1 or
T2. If the programmer allocates the correct size, then this is legal since S ≺ T1/T2. Since we
see this as a downcast, the initialisation at line 11, for pointer p, would create a new object
with type T1, stop propagating the object of type S, and back-propagate the new object.
This would similarly occur at line 13 for pointer q. p and q at lines 11 and 13 would then
not alias since they would perform a type-based strong update (discussed in the following
section) on the back-propagated object which does not match their type, and neither would
point to the S typed object any longer from the type-based semi-strong update to an object
of type T1/T2. In essence, we have split an abstract object into more abstract objects, each
of which representing a smaller set of concrete objects than the original abstract object.

4.1.5.3 Type-based strong updates ([TBSU])

When an object is typed and there is no relation between the object’s type and the pointer’s
element type, we know that the pointer is pointing to an object which would be impossible
during execution (i.e., a spurious object). A conforming program cannot, for example, read
an object through an unrelated pointer. In the [TBSU] case, we return nothing, which is, in
effect, a strong update; the pointer will not regard the killed object as in its points-to set. A
type-based strong update (TBSU) differs from a typical strong update in that it applies to
any potential initialisation points, uses type information to perform it, and can occur to all
forms of abstract objects.
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1 int s;
2 int *i = &s;
3 *i = 1;
4 float *f = new(i) float{2.0};
5 *f = 2.0;
6 // It is now undefined behaviour to load i.

Figure 9 An example of object reuse.

4.1.6 Field-sensitivity ([FIELD] [FF-NOT-IN-PT] [FF-EQ-PT])
Taking the address of a field of an aggregate object is handled by the [FIELD] rule. The
[FIELD] rule is the same as that in a standard flow-sensitive analysis, except that (1)
initialisation is performed on the objects which q points to since assumptions about the
aggregate objects in question are being made, and (2) the type of the new field object is
assigned by looking up the aggregate type of the object having its field taken. The [TBSU]
case occurring on pointees of q has a similar effect to the filtering that cclyzer-ss performs
where no field object is created for a spurious aggregate object [6, 7].

Though not represented in the rules (for simplicity), rather than further deriving a field
object from a field object, we add the field index to the existing field object. For example,
rather than deriving field object o.fk.fj , we would derive o.fk+j . Only dealing with field
objects derived from aggregate objects makes reasoning about the analysis easier.

Struct objects in C and standard-layout objects in C++ share the same memory address
as that of their first field. Our analysis must ensure there is an equivalence between the
points-to sets of such objects and their first field. A non-standard-layout object in C++ does
not have to alias its first programmer-defined field in C++. This is often the case in practice,
as in Clang and GCC, due to the implementation placing a virtual table pointer at the start
of some objects for example. However, for the purpose of a pointer analysis, the first field of
an object is tracked, regardless of whether it is programmer-defined or not, so this “first-field
aliasing” needs to be applied to all struct and class objects.

We follow [6] where changes involving an object or the first field of an object trigger
changes in the other through rules [FF-NOT-IN-PT] and [FF-EQ-PT]. They both use the
first-field alias relation, defined as follows, similar to [6],

I Definition 1. First-field alias relation. The first-field alias relation is defined as the
equivalence relation ∼̇ : A×A such that o, o′ ∈ A, o ∼̇ o′ if and only if:

o′ = o.f0

The [FF-NOT-IN-PT] rule ensures that when an object o belongs to some points-to set,
then so does its first field o.f0, if it exists, and vice versa. The [FF-EQ-PT] rule ensures that
when an object o is in the points-to set of an object o′, then it is also in the points-to set of
its first-field o′.f0, and vice versa. This keeps both points-to sets equivalent.

4.2 Object reuse
The base analysis presents a simple overview of our approach. This section extends

our base analysis by considering object reuse, a special language feature in C and C++,
to make the analysis handle programs making use of this feature. In C, writing to a heap
object through a pointer of type t∗ changes that object’s type to type t; reads through a
pointer of type t∗ are now legal, and reads through pointers of type t′∗ where t′ ⊀ t result
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1 char *pool;
2 void *palloc(size_t s) {
3 // Find index appropriate for s...
4 return pool + n;
5 }
6 void *pfree(char *m) {
7 // Return m to pool...
8 }
9 int main(void) {

10 pool = malloc(512);
11 int *i = palloc(sizeof(int));
12 *i = 1;
13 pfree(i);
14 float *f = palloc(sizeof(float));
15 *f = 2.0;
16 }

Figure 10 An example of pool allocator.

in undefined behaviour. This would be only permitted if t fits in the space allocated for
the object. Furthermore, in C, the type of an object (referred to as the “effective type” in
the C standard) can be changed through functions memcpy and memmove or by being copied
as a character array, thus not requiring a store through a pointer to the new type. Reuse
is also possible in C++ with the addition that this may be achieved through placement
new and that placement new can be used on stack and global objects. Though necessary to
achieve better soundness, we have excluded reuse from the base analysis as it introduces a
performance penalty, slight imprecision, is not often used in many C/C++ programs, and
can be error-prone outside common patterns like pool allocators (which our analysis can
handle when the pool is from the heap). An example of reuse is shown in Figure 9.

The form of reuse shown in Figure 9 cannot generally be soundly handled by our base
analysis. A pool allocator, like in Figure 10, on the other hand, can be handled soundly by
our base analysis, despite it relying on reuse. In Figure 10 the memory given to f can be the
same as that given to i. The difference from Figure 9 is that the memory object is assigned
from the main pool, similar to how an object may flow from any allocation wrapper (around
malloc). The untyped object from the pool would then be initialised. The base analysis
cannot handle pool allocators where the pool is a stack or global object since such an object
would not be untyped (and thus cannot be initialised).

The incompatibility between reuse and the base analysis stems from the init function.
used by the [LOAD], [STORE], and [FIELD] rules. Typically, reuse would not be possible
through a Load, nor a Field not being stored to. However, if we limit reuse to stores,
the analysis may be unsound since the case of changing the type of an object through
memcpy/memmove or copying as an char array would need to be specially handled. Thus, we
allow for reuse at Load, Store, and Field instructions. The init functions is changed to
that in Figure 11.

The new case in the init function, [REUSE], checks for an incompatibility between the
object’s type and the pointer’s element type. If the types are incompatible, a clone is returned
with the new type, that is, the object is being reused with the new type. This is a semi-strong
update similar to the [TBSSU] and [INITIALISATION] cases since the previous object is no
longer propagated and another is instead. We also remove the h(ot′) condition from the
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init(t, ot′) =



ot̃ if t′ ≡ •[INITIALISE]

ot′ if t̃ ≺ t′[TBWU]

ot̃ if t′ ≺ t̃ ∧ t′ 6= t̃[TBSSU]

ot̃ if t′ ⊀ t̃ ∧ t̃ ⊀ t′[REUSE]

∅ otherwise[TBSU]

Figure 11 Modifications to the init function to account for reuse.

[BACK-PROPAGATE-SG]

` : p = &o ot newly cloned

ot ∈ pt(`, p)

[BACK-PROPAGATE-FIELD]

` : p = &q→fk `′
q−→ ` o ∈ pt(`′, q)

o′ = init(T (q), o) (o′.fk)t newly cloned

(o′.fk)t ∈ pt(`, p)

Figure 12 Extensions to the analysis to implement back-propagation for stack, global, and field
objects.

[TBSSU] case to conservatively implement C++’s allowance of reuse of stack and global
objects, as a stack or global object may be accessed through a pointer to a derived type (i.e.,
through downcasting) with placement new. It is not necessary to specially handle placement
new since the object will eventually be written to as the new type, or read from as such. The
[TBSU] will no longer be triggered as all cases are now covered with the introduction of the
[REUSE] case. Fortunately, the [REUSE] case is a TBSSU rather than a TBWU.

In the base analysis, back-propagation was only done for heap objects because stack and
global objects had one unchanging type (hence they are never cloned). Since C++ allows for
reuse of stack and global objects, we need to back-propagate them when they are cloned.
[BACK-PROPAGATE-SG] implements this in Figure 12 like the [BACK-PROPAGATE] rule.

Furthermore, we need to account for reuse of field objects. Back-propagation for field
objects is less obvious since field objects can be generated at multiple locations depending
on the solver’s worklist order. Since fields do not have an allocation site to back-propagate
to, field clones are retrieved at any Field instruction which had retrieved the original field
object, as in the [BACK-PROPAGATE-FIELD] rule. [BACK-PROPAGATE-FIELD] implements this
as a second [FIELD] rule operating solely on the clones. Figure 12 also shows this rule.

4.3 Soundness and the heap cloning upper bound
For a C or C++ program conforming to our type model, our analysis is as sound as Sparse.
To soundly analyse programs conforming to our type model, object reuse must be enforced
even though doing so incurs a performance and precision penalty. The typical allocation-
site-based model bounds the number of objects of a program by the number of allocation
sites. Context-sensitive analyses bound the number of context-sensitive heap objects by the
number of calling contexts [37]. For real-world scenarios, this is too large, so the context
depth is often limited by a small number to make analyses scalable. When the maximum
calling context depth is capped at 3 (or more), context-sensitive analysis is usually unscalable
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Table 2 Statistics about the benchmarks. The first column of data represents the lines of code,
the second column represents the size of the compiled program’s bitcode, the fourth, fifth, and sixth
columns represent the number of different instructions in the bitcode with the number of those
instructions which are annotated by ctir in parentheses, the seventh column represents the number
of canonical types with the number of those which are structs in parentheses, and the final column
shows the number of fields in the largest struct in the program.

Bench. LOC Size Instructions (ctir annotated) # Canon.
types

(structs)

Largest
structLoads Stores GEPs

du 22212 1372 KiB 14742 (2879) 5781 (907) 5384 (4928) 565 (79) 37
date 10002 1132 KiB 12185 (4430) 2860 (912) 7395 (6925) 182 (21) 30
touch 9820 1056 KiB 11416 (4392) 2502 (907) 7304 (6878) 178 (20) 30
ptx 16247 1056 KiB 11787 (2362) 4395 (714) 4546 (4180) 339 (43) 31
csplit 14565 936 KiB 10609 (2020) 3930 (563) 3887 (3628) 347 (49) 31
expr 14070 912 KiB 10336 (2028) 3807 (544) 4000 (3728) 315 (38) 31
tac 13888 876 KiB 10067 (1908) 3678 (491) 3710 (3457) 295 (34) 31
nl 13420 868 KiB 9960 (1924) 3629 (500) 3678 (3469) 293 (34) 31
mv 15962 844 KiB 7713 (1291) 3500 (544) 2437 (2136) 454 (59) 39
ls 14471 804 KiB 7050 (834) 3576 (334) 1655 (1233) 375 (50) 29
ginstall 14968 772 KiB 6843 (944) 3266 (376) 1800 (1521) 416 (53) 39
sort 12000 744 KiB 7743 (945) 3312 (422) 2262 (1802) 391 (58) 42

for larger programs [37]. The number of heap objects in our analysis is bounded by the
number of allocation sites, the number of types on the generated type graph, and the number
of fields in the largest structure type. Thus, in the worst case, the number of objects in our
analysis would be the product of those three values, which would usually be far fewer than
the number of objects created when cloning according to calling contexts.

5 Evaluation

The aim of our evaluation is to compare the performance and precision (through alias testing)
of TypeClone and Sparse. We first describe our implementation in Section 5.1 and then
present the results of our experiments and discuss them in Section 5.2.

5.1 Implementation
Our implementation of the analysis is comprised of two major components: a custom Clang
frontend to produce annotated LLVM IR with C/C++ type information and the TypeClone
implementation built upon LLVM and SVF [40]. We use version 9.0 of both Clang and
LLVM.

LLVM’s type system is different to that of C/C++. In the LLVM IR produced, Clang
does not maintain any type information from C/C++ except through TBAA metadata. Due
to the basic nature of TBAA metadata, and that Clang does not annotate all instructions
that we are interested in with TBAA metadata (notably GEP instructions), we implement
our own type metadata system called ctir which, like EffectiveSan’s customised Clang [14],
tags instructions of interest with DWARF debug information.

During code generation, Clang introduces loads, stores, and other instructions which do
not directly map to high-level code. This can, for example, be a byproduct of the nature of
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partial SSA form, or implementation-defined details like using virtual tables to implement
virtual calls. Like TBAA, the instructions and declarations which correspond to C/C++
features of interest are annotated. In the absence of type information, our analysis falls back
to standard flow-sensitive pointer analysis methods, not updating upon the type, i.e. not
using init. The following are annotated by ctir:

Allocations corresponding to stack and global declarations (the allocated object’s type).
Load and store instructions which correspond to pointer dereferences and C++ reference
accesses (the dereferenced pointer’s element type).
GEP instructions which correspond to field and array accesses (the base pointer’s element
type).
Virtual calls (the base pointers’s element type).
Virtual tables (the owning class).

Since DWARF types correspond exactly to C/C++ types, in SVF, we reduce all types
to “canonical types” which are types stripped of their signedness, constness, typedefs, and
other auxiliary data. The type graph is built from these canonical types and the analysis
then only operates on canonical types (converting types obtained from ctir annotations as
necessary).

A virtual call like p→ foo() is translated into four LLVM instructions: (1) a Load
instruction, vtptr = ∗p, which retrieves virtual table pointer vtptr by dereferencing pointer p,
(2) a Field instruction, vfn = &vtptr→k, which retrieves the entry (i.e., target function) in
the virtual table at offset k, (3) a Load instruction, fp = ∗vfn, which retrieves the address
of the target, and finally (4) a Call instruction, fp(p). For calls to external functions
where code is unavailable to analyse, a list of commonly used functions is maintained which
summarise their side-effects (like memcpy, _Znwm for C++’s new, mmap, strcpy, and others)
following [19, 35].

Andersen’s analysis, optimised with wave propagation [34, 29], is used to build the value-
flow graph of the input program. Our analysis is implemented on top of this value-flow graph
following our rules in Section 4. We compare TypeClone with and without reuse with a
sparse flow-sensitive and context-insensitive analysis (Sparse) [20] provided by SVF [39].
To the best of our knowledge, this is the only publicly available implementation of whole-
program sparse flow-sensitive and context-insensitive C/C++ pointer analysis for LLVM.
We also do not know of a publicly available implementation of a whole-program flow- and
context-sensitive (FSCS) C/C++ pointer analysis for LLVM. According to a study using
commercial tools [3], existing FSCS algorithms for C “do not scale even for an order of
magnitude smaller size programs than those analyzed [with Andersen’s analysis]” in their
study. As shown in our evaluation, for annotated pointer accesses, TypeClone can achieve
more precise results than Sparse, thus leaving limited room for benefit in this case by
modelling the heap context-sensitively.

5.2 Experiments
We compare the performance and precision of our analysis, with and without reuse considered,
with Sparse. We use the 12 largest programs, per LLVM bitcode size, in GNU Coreutils
8.31 (excluding dir and vdir since they are almost identical to ls). Coreutils was chosen
because the included programs use various memory allocation wrappers to perform allocation.
Table 2 shows the size (in LOC and of the generated bitcode), number of instructions, number
of canonical types and how many of those are structs, and the largest struct by number of
fields (after flattening) for each benchmark. All experiments were carried out on a machine
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Table 3 Running times and object counts of Sparse and TypeClone (with and without reuse).
The first column of data represents the running time of Sparse and the second column represents
the number of objects in the analysis. The third and fourth columns represent the running time of
TypeClone (without reuse) and its slowdown from Sparse, and the fifth column represents the
total number of objects in the analysis with the number of clones created in parentheses. The same
is repeated for TypeClone with reuse in the final 3 columns. The final row shows the geometric
mean of slowdown.

Bench. Sparse TypeClone TypeClone (reuse)

Time Obj. Time Diff. Obj.
(clones) Time Diff. Obj.

(clones)

du 15.83s 4295 92.81s 5.83 × 5283 (991) 2829.37s 178.70× 7436 (3144)
date 0.34s 1924 1.02s 3.28 × 2003 (80) 1.24s 3.63× 2051 (128)
touch 0.33s 1730 0.97s 3.25 × 1817 (87) 1.20s 3.61× 1866 (136)
ptx 5.19s 3245 282.76s 46.41× 4242 (997) 378.30s 72.85× 4538 (1292)
csplit 3.45s 2885 4.98s 1.51 × 3147 (263) 265.83s 77.10× 3919 (1035)
expr 2.17s 2750 50.40s 26.10× 3358 (609) 80.91s 37.29× 3603 (854)
tac 2.59s 2700 58.84s 25.74× 3383 (684) 78.63s 30.37× 3462 (763)
nl 2.93s 2663 101.69s 38.07× 3342 (680) 118.65s 40.53× 3424 (762)
mv 0.75s 3441 43.90s 61.21× 4403 (961) 67.04s 89.86× 4615 (1173)
ls 0.48s 2975 4.49s 10.43× 3278 (307) 4.58s 9.58× 3302 (331)
ginstall 0.30s 3332 1.75s 6.76 × 3712 (378) 2.29s 7.53× 3779 (446)
sort 0.77s 2657 11.93s 17.30× 2994 (339) 12.36s 16.15× 3034 (379)

Average 11.15× 25.12×

running 64-bit Ubuntu 18.04.2 LTS with an Intel Xeon Gold 6132 processor at 2.60GHz and
128GB of memory.

To test the performance, we ran Sparse and TypeClone (without and with reuse)
ten times and averaged the total running time of the analyses (constraint solving upon the
VFG, excluding the pre-analyses to build the VFG and other auxiliary data structures like
the type graph). The results are presented in Table 3. The “Diff.” columns represent how
many times slower an analysis was compared to Sparse, and the “Obj.” and “Obj. (clones)”
columns represent the total number of objects in an analysis, with the number of clones
created mentioned separately, where relevant. Generally, we expect running time to increase
in TypeClone because of the introduction of new objects, which means larger points-to
sets and thus extra propagation time, and back-propagation, which means VFG nodes are
processed more often. For TypeClone without reuse, all slowdown presented is in a general
range of acceptability of 1.5×–35× except for when analysing benchmarks mv and ptx. Both
benchmarks created the largest number of clone objects relative to original objects. Overall,
the slowdown is usually affordable and the (geometric) mean slowdown is a little over 11×
when not considering reuse.

Modelling reuse in TypeClone slows down the analysis. Too many opportunities
for TBSUs, which would reduce the number of objects created (and prevent some back-
propagation) and reduce the size of points-to sets, become TBSSUs with the [REUSE] rule.
Stack and global objects also become a source of clones. This is seen in the number of clones
created. Benchmarks which were many times slower than TypeClone without reuse, like du
and csplit, had many more clones created, and those that remained close in running time
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Table 4 The number of alias queries performed (between ctir-annotated instructions), the
number of those alias queries returning a no-alias relation for Sparse and TypeClone (with and
without reuse considered), and the improvement to the number of alias queries returning a no-alias
relation presented by TypeClone (with and without reuse considered) against Sparse.

Bench. Queries Sparse TypeClone TypeClone (reuse)

No-alias
results

No-alias
results Improv. No-alias

results Improv.

du 76291490 55553836 74384866 33.90% 72825202 31.09%
date 151400720 111391680 141377516 26.92% 138450386 24.29%
touch 149194010 109198398 139183292 27.46% 136253192 24.78%
ptx 52845630 43771886 50867888 16.21% 50655276 15.73%
csplit 38719506 30450964 37758260 24.00% 36824196 20.93%
expr 39835032 33654030 38228618 13.59% 38017650 12.97%
tac 34427556 27745100 32782666 18.16% 32654250 17.69%
nl 34863120 27895764 33204888 19.03% 33065830 18.53%
mv 15940056 12655806 14978588 18.35% 14894140 17.69%
ls 6167772 5242862 5869944 11.96% 5817110 10.95%
ginstall 8193906 7755314 7959676 2.64% 7920014 2.12%
sort 10198442 8189034 9583680 17.03% 9499016 16.00%

Average 16.64% 15.36%

had a more modest growth in the number of extra clones created. We see a (geometric) mean
slowdown of a little over 25× when considering reuse, more than twice as much compared to
the base analysis.

To test the precision, we performed an alias query between all top level pointers of interest
within a function (those pointers accessed at an instruction annotated with a C/C++ type
with ctir) against each other. Two pointers are considered aliases if their points-to sets
intersect, or if one pointer contains a field object generated from an object in the other
pointer’s points-to set. A no-alias result is always more desirable than a may-alias result as it
paves the way for more optimisations, for example. The number of alias queries, the number
of queries returning a no-alias relation (the remainder return a may-alias relations), and the
improvement TypeClone presents in the number of no-alias relations returned compared
to Sparse are presented in Table 4. We find that for Sparse, in all benchmarks except
ginstall, 72%–85% of alias queries return a no-alias result. ginstall is an outlier with
almost 95% of alias queries returning a no-alias result. For TypeClone, 93% to over 97% of
alias queries result in a no-alias relation (91% to over 96% when reuse is taken into account).
Excluding ginstall, TypeClone (without considering reuse) sees an increase in almost
12% to almost 34% in the number of no-alias results against Sparse. The improvement
for ginstall is much less at 2.64%. The results produced by Sparse for ginstall were
already strong and TypeClone had little room to improve. Overall, the (geometric) mean
improvement sits at over 16% when not taking reuse into consideration. When taking reuse
into account, results are still strong albeit weaker than when not taking reuse into account.
Excluding ginstall again, we see an increase in almost 11% to over 31% in the number of
no-alias results against Sparse. For ginstall, the improvement is 2.12%, and the overall
(geometric) mean improvement is over 15%.

Overall, TypeClone is successful at differentiating points-to sets when objects appear
from the same allocation site, as is the case with allocation wrappers, which Coreutils makes
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use of. We also notice that the imprecision introduced by handling reuse is very slight. Even
though handling object reuse eliminates many opportunities for TBSUs, instead creating
more clones, the [REUSE] case in init is a TBSSU and thus does not cause as much precision
loss as it would have if it was a TBWU, even if it may adversely affect performance.

6 Related work

Whole-program flow-sensitive pointer analysis for C and C++ has been studied extensively
in the literature. The approaches in [8] and [15] provide the formulations for an iterative
data-flow framework [25]. The work presented in [45] considered both flow- and context-
sensitivity by representing procedure summaries with partial transfer functions. To eliminate
unnecessary propagation of points-to information during the iterative data-flow analysis,
sparse analysis propagates points-to facts sparsely across pre-computed def-use chains [20, 33].
Initially, sparsity was achieved through a Sparse Evaluation Graph [9, 21, 22], a refined CFG
with irrelevant nodes removed. Further progress was made through various SSA forms like
factored SSA [10], HSSA [11] and partial SSA [27]. The def-use chains of top-level pointers,
once put in SSA form, can be explicitly and precisely identified, giving rise to a semi-sparse
flow-sensitive analysis [19]. Then, by leveraging the idea of staged analyses [17, 20] where a
fast, imprecise analysis bootstraps a more precise analysis, flow-sensitive analysis was made
fully sparse, with the first stages identifying def-use chains of both top-level and address-taken
pointers [20, 39]. Despite these achievements, most flow-sensitive analyses model the heap
with one abstract object per allocation site. Most analyses which provide a more precise
heap model do so by employing context-sensitivity.

On the other hand, structure-sensitive analysis (cclyzer-ss) [7] improves the allocation-
site-based heap model and presents a field-sensitive Andersen’s analysis that lazily infers the
types of heap objects through the casting of pointers to those objects to eventually filter out
redundant field derivations. When a pointer to a heap object is cast, that object is considered
to potentially be of the element type of the pointer it is cast to and so a new object is
created with the pointer’s element type, and back-propagated to the allocation site to ensure
soundness. Type-based alias analysis (TBAA) [13] uses Modula-3’s type system to (almost)
statelessly determine aliasing relations. TBAA is implemented in Clang/LLVM and GCC for
C, C++, and Objective-C, and works because of the strict aliasing rules defined by those
languages. Inspired by TBAA and cclyzer-ss, this paper proposes a new flow-sensitive
type-based heap cloning model to improve the precision of sparse points-to analysis for C
and C++ programs which conform to the strict aliasing rules.

7 Conclusion

This paper presents a new flow-sensitive points-to analysis with type-based heap cloning and
no context-sensitivity. The novelty of our approach lies in its lazy heap cloning. An untyped
abstract heap object created at an allocation site is killed and replaced with a new (clone)
object uniquely identified by the type information at its use site for flow-sensitive points-to
propagation. This yields more precise points-to relations at different program points without
incurring the high costs of context-sensitivity. Our approach also explores a new form of
strong updates based on types for flow-sensitive modelling. The resulting analysis improves
upon state-of-the-art sparse flow-sensitive analysis answering, on average, over 15% more
alias queries with a no-alias result.
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