Adaptive Branch-and-Bound Tree Exploration for
Neural Network Verification

Kota Fukuda*, Guanqin Zhang', Zhenya Zhang*, Yulei Suif, Jianjun Zhao*
*Kyushu University, Fukuoka, Japan
TUniversity of New South Wales, Sydney, Australia

Abstract—Formal verification is a rigorous approach that can
provably ensure the quality of neural networks, and to date,
Branch and Bound (BaB) is the state-of-the-art that performs
verification by splitting the problem as needed and applying off-
the-shelf verifiers to sub-problems for improved performance.
However, existing BaB may not be efficient, due to its naive way of
exploring the space of sub-problems that ignores the importance
of different sub-problems. To bridge this gap, we first introduce a
notion of “importance” that reflects how likely a counterexample
can be found with a sub-problem, and then we devise a novel ver-
ification approach, called ABONN, that explores the sub-problem
space of BaB adaptively, in a Monte-Carlo tree search (MCTS)
style. The exploration is guided by the “importance” of different
sub-problems, so it favors the sub-problems that are more likely to
find counterexamples. As soon as it finds a counterexample, it can
immediately terminate; even though it cannot find, after visiting
all the sub-problems, it can still manage to verify the problem. We
evaluate ABONN with 552 verification problems from commonly-
used datasets and neural network models, and compare it with
the state-of-the-art verifiers as baseline approaches. Experimental
evaluation shows that ABONN demonstrates speedups of up to
15.2x on MNIST and 24.7x on CIFAR-10. We further study the
influences of hyperparameters to the performance of ABONN, and
the effectiveness of our adaptive tree exploration.

Index Terms—neural network verification, branch and bound,
Monte-Carlo tree search, counterexample potentiality

I. INTRODUCTION

Recently, artificial intelligence (AI) has experienced an
explosive development and pushes forward the state-of-the-
art in various domains. Due to their advantages in handling
complex data (e.g., images and natural languages), Al products,
especially deep neural networks, have been deployed in dif-
ferent safety-critical systems, such as autonomous driving and
medical devices. Despite such prosperity, a surge of concerns
also arise about their safety, because misbehavior of those
systems can pose severe threats to human society [1]. Given
that neural networks are notoriously vulnerable to adversarial
perturbations [2], it is of great significance to ensure their
quality before their deployment in real world.

As a rigorous approach, formal verification has been actively
studied in recent years [1], [3], which can provably ensure the
quality of neural networks. A straightforward approach [4],
[5] is by encoding a verification problem as logical con-
straints which can be solved by mixed integer linear program-
ming (MILP). However, due to the non-linearity of activation
functions, this approach is not scalable to large networks.
Abstraction-based approaches [6]-[9], that over-approximate
the output regions of networks, are much faster; however, they

suffer from an incompleteness issue and may often raise false
alarms that are misleading, with spurious counterexamples.
Branch and Bound (BaB) [10] is an advanced verification
approach for neural networks that can mitigate the incomplete-
ness issue of approximated verifiers. It is essentially a “divide-
and-conquer” strategy, which splits a problem if false alarms
arise and applies approximated verifiers to the sub-problems
for which those verifiers suffer less from the incompleteness
issue. After verifying all the sub-problems or encountering a
real counterexample in a sub-problem, BaB can conclude the
verification and return accordingly. In this way, it overcomes
the incompleteness issue in directly applying approximated ver-
ifiers to the original verification problem, thus more effective.

Motivation. While BaB has shown great promise, it may not
be efficient, because it explores the space of sub-problems
naively in a “breadth-first” manner and ignores the different
“importance” of different sub-problems. Indeed, different sub-
problems should have different priorities in verification, be-
cause with some sub-problems, it is more likely to find coun-
terexamples, and thereby conclude the verification efficiently.
By prioritizing these more important sub-problems, we can save
plenty of efforts in checking unnecessary sub-problems and
improve the efficiency of verification.

Contributions. In this paper, we propose a novel verification
approach ABONN, that is, Adaptive BaB with Order for Neural
Network verification, which incorporates the insights above.

We first introduce a notion of “importance” over different
sub-problems, called counterexample potentiality, used to char-
acterize the likelihood of finding counterexamples with a sub-
problem. It is defined based on two attributes of a sub-problem,
including its fineness (i.e., the level of problem splitting) and
a quantity returned by approximated verifiers that signify the
level of specification violation of the sub-problem.

We then devise ABONN, which features an adaptive ex-
ploration in the space of sub-problems in a Monte-Carlo
tree search (MCTS) [11] style. Guided by the counterexample
potentiality of different sub-problems, ABONN favors the sub-
problems that are more likely to find counterexamples, and as
soon as it finds a counterexample, it can immediately terminate
and report a negative result about the verification problem. Even
though it cannot find such a counterexample, after visiting all
the sub-problems, it can still manage to verify the problem.

We perform a comprehensive experimental evaluation for
ABONN, with 552 verification problems that span over five
neural network models in datasets MNIST and CIFAR-10,

b=21€[0,1]] Az €[0,1] ¥=(0O+25>0)

ReLU ReLU

2
T T3
-3 2
1 06
2 ReLU 3 ReLU

[01]7 T2 —=>

1.7

\
vl

O

T2 T4

(a) A neural network NN and its specification

2.7 -2.7 2.7
i \‘rr T \rr
bpl 252 2.65 Lt 252 265
U
0.23-0.750.24 -%
Step 1 Step 2 Step 3

Counterexample
(b) A running example of BaB for verifying N

Fig. 1: Neural network verification problem and a solution via
branch and bound (BaB).

and two state-of-the-art verification approaches as baselines.
Our evaluation shows a great speedup of ABONN over the
baseline approaches, for up to 15.2x in MNIST, and up
to 24.7x in CIFAR-10. We further study the influences of
hyperparameters, thereby exhibiting the necessity of striking
a balance between “exploration” and “exploitation” in MCTS.
Moreover, we demonstrate the effectiveness of our adaptive
tree exploration strategy by separating the results for violated
problems and certified problems.

II. OVERVIEW OF THE PROPOSED APPROACH
A. Verification Problem and BaB Approach

A neural network N and its associated specification are given
in Fig. 1. The verification problem aims to determine whether
the neural network N satisfies the specification, i.e., for all
inputs (z1,22) € [0, 1] x [0, 1], whether it holds that the output
O of N satisfies a logical constraint O + 2.5 > 0.

Fig. 1b illustrates how BaB [10] works to solve the problem.
BaB splits the problem and applies verifiers to sub-problems to
pursue better performance. It decides whether a (sub-)problem
should be split, by applying an approximated verifier to it. The
verifier can return a value, as depicted in each node in Fig. 1b,
which signifies how far each problem is from being violated.
If the value is positive, then the problem is verified and no
need to split. Otherwise, BaB will check whether the negative
value returned by the verifier is a false alarm, by validating the
counterexample given by the verifier. If the counterexample is a
real one, the verification can be concluded that the specification
is violated. Otherwise, BaB will split the problem and apply
verifiers to sub-problems. Problem splitting can be done in
different ways; in this paper, we follow existing literature [10],
[12] and impose input constraints to ReLU activation functions.

The running example in Fig. 1b works as follows:

1) By applying a verifier to the original problem, BaB obtains
a negative returned value —2.7, and identifies that this is a
false alarm. So, it splits the problem to two sub-problems;

2) BaB then applies the verifier to each of the two sub-
problems, by which it obtains —2.52 and —2.65, respec-

-2.7 -2.7

-2.52
.

72| \ra

0.24 -2
3.Selection&Expansion
Counterexample

1.Initialization 2.Expansion

Fig. 2: ABONN’s process for solving the problem.

tively. Again, it identifies that both are false alarms, and so,
it continues to split the sub-problems;

3) This continues in the subsequent layer of the tree, and it
identifies the sub-problems that are verified (with values
0.23 and 0.24) and that need to be split further (with values
—0.75). Notably, the verification can be terminated in this
layer, because a real counterexample is detected in the sub-
problem with —2, which can serve as an evidence that the
network does not satisfy the specification.

B. The Proposed Approach

While BaB in Fig. 1b is effective to solve the problem, it
may be not efficient, because it ignores the information about
how important each sub-problem is. Indeed, different sub-
problems are not equivalent in terms of their importance, and in
particular, the exploration of the BaB tree should favor the sub-
problems that are more likely to find a counterexample, because
once that is achieved, verification can be early terminated.

Moreover, the information about the likelihood of finding
counterexample has been embedded in the attributes of the
nodes in the BaB tree. For instance, among the children of the
root, the node with —2.65 should be prioritized than the node
with —2.52, because according to such an assessment done by
approximated verifiers, the former involves a sub-problem that
is farther from being verified than the latter, thus more likely
to contain a real counterexample.

Having these insights, we propose ABONN, that explores the
space of sub-problems adaptively, in a Monte-Carlo tree search
(MCTS) fashion. MCTS [11] is a reinforcement learning-based
algorithm that expands a search tree guided by rewards, and so,
it pays more efforts to the branches that are more “promising”;
meanwhile, to avoid being too greedy, it also allocates budgets
to the less “promising” branches to strike a balance.

For the example in Fig. 1, we differ from the naive BaB in the
selection of branches. As shown in Fig. 2, ABONN selects the
most “promising” node over the children of the root to proceed,
and manages to find a real counterexample in the subsequent
steps. Notably, ABONN is more efficient than the naive BaB,
because it saves two visits of the sub-problems, each of which
involves an expensive process of problem solving.

III. PRELIMINARIES

Neural Networks. A (feed-forward) neural network NV : R"™ —
R™ (see the example in Fig. 1a) maps an n-dim input to an m-
dim output. The mapping from the input to output is conducted
by alternating between affine transformations &; = W;x;_1 +
B; (where W; is a matrix of weights and B; is a vector of

biases) and non-linear transformations x; = o(&;) (where o is
called an activation function). Specially, x(is the input of NV
and xy, is the output of N, where L is the number of layers
of the network. Regarding the selection of activation function,
we follow many existing works (see a survey [1]), and adopt
ReLU (i.e., o(z) = max(0,x)) as the activation function.

Verification Problem. We denote the specification of a neural
network N as a tuple (®,¥), where ® is a predicate over
the input of N, and W is a predicate over the output of V.
Commonly-used properties, such as local robustness in image
classification, can be described by such a specification. Given
a reference input xg, ®(x) requires that the input & must stay
in the region {x | ||z — ®ollso < €}, where € € R denotes
a perturbation distance, and W (N (x)) requires that the output
N (z) must imply the same label as that of x.

A verification problem concerns with a question as follows:

e Given: a neural network N and a specification (P, ¥);
e Return: true if U(N (x)) holds, for any input & that holds
®(x); false otherwise.
A verifier is implemented to answer a verification problem. In
case it returns false, it will simultaneously return a counterex-
ample &, which is an input that holds ®(&) but does not hold
U(x), as an evidence of the violation of specification.

Branch and Bound (BaB). BaB [10] is the state-of-the-art
neural network verification approach, and has been adopted as
the theoretical foundation of several verification tools, such as
ap-Crown [13]. While it is essentially a “divide-and-conquer”
strategy, now it is often used to mitigate the incompleteness
issue of approximated verifiers, by applying these verifiers to
smaller verification problems. Below, we elaborate on how BaB
collaboratively works with approximated verifiers.
Approximated verifiers, denoted as AppVer, are a class of
verifiers that solve a problem by over-approximating the output
region of a neural network—once the over-approximated output
satisfies the specification, the original output must also satisfy
it. By applying to a problem, AppVer can return a real value
p to indicate the satisfaction of the over-approximated output:
if p is positive, then the over-approximated output satisfies the
specification; otherwise, it violates the specification. However,
in the latter case, the result given by AppVer is not necessarily
correct, because it is possible that the original output does not
violate the specification. This can be validated by checking the
counterexample & returned by AppVer, and if (N (&)) is not
violated, then & is a spurious one, and so AppVer raises a false
alarm. This is known as the incompleteness issue of AppVer.
BaB is used to mitigate this issue, by applying AppVer
adaptively to smaller problems. It works as follows:
i) First, it applies AppVer to the original verification prob-
lem, and receives p: if p is positive, or p is negative with
a valid counterexample &, verification can be terminated;
ii) In the case that p is negative and the counterexample & is a
spurious one, it splits the problem into two sub-problems.
This can be done by adding an additional logical constraint
to each of the sub-problems, which predicates over the
input condition of the ReLU in a neuron selected from the

network (i.e., the additional constraint is either the input
of ReL.U is positive, or the input of ReLU is negative);

iii) It then applies AppVer to each of the sub-problems, and
decides whether it needs to further split the sub-problems,
in the same way as that in Step ii.

BaB Tree. The process of problem splitting and solving in BaB
can be characterized as a tree, as illustrated in Fig. 1b. In this
tree, each node identifies a sub-problem, and each sub-problem
is identified by a sequence I' of input constraints of ReLUs
(namely, the ReLU constraints from the root to the current
node). Given the ¢-th ReL.U in a network, let rj' denote the
condition that the input of the ReLU is positive, and r;” denote
the condition that the input of the ReLU is negative. Specially,
the root is identified by an empty sequence.

It remains a problem in BaB how a ReLU should be selected
in the network to split a problem, when a false alarm arises with
the problem. There have been various strategies devised for
that purpose, such as DeepSplit [14] and FSB [15]. All these
strategies can be seen as a pre-defined heuristic H that can
return a ReLU given a specific (sub-)problem (namely, given a
sequence of ReLUs that have already been expanded). In this
work, our aim is not to optimize H, but we are orthogonal to
that line of work (see §VI); we simply select the state-of-the-art
ReLU selection method [14], following existing literature [12].

IV. ABONN: THE PROPOSED VERIFICATION APPROACH

As introduced, BaB produces a large space of sub-problems
and accomplishes verification by exhaustively visiting the sub-
problems. However, the strategy adopted by existing BaB for
space exploration is naive, in the sense that it ignores the
importance of different sub-problems, but visits them in a naive
“first come, first serve” manner, which is very inefficient.

In this paper, we leverage a notion of “importance” over the
sub-problems (detailed in §1V-A) and devise a novel BaB-based
verification approach that features an adaptive tree exploration
in a Monte-Carlo tree search (MCTS) style (detailed in §1V-B).
Notably, we link the notion of “importance” to the likelihood
of finding counterexamples in different sub-problems, and the
rationale behind is as follows: during verification, we prioritize
those sub-problems that are more likely to find counterexam-
ples; as soon as we find a counterexample, we can immediately
terminate the verification and return false as a result; even
though we cannot find such a counterexample, compared to
naive BaB, we only differ in the order we visit the sub-problems
but we can still manage to verify the problem finally.

A. Counterexample Potentiality

We elaborate on the notion of “importance” of different sub-
problems, by defining an order called counterexample potential-
ity. Specifically, the potentiality of having a counterexample in
a node of BaB tree is related to the following two attributes:
e Node depth. In BaB tree, the more a problem is split, the

less over-approximation will be introduced when applying

AppVer; therefore, under the premise that p is still negative

for a node T, the greater its depth is, the more likely it is to

find a real counterexample from I';

e p. The value p, obtained by applying AppVer to a sub-
problem, is a quantity that reflects how far the sub-problem
is from being violated, according to the evaluation of AppVer
that relies on the over-approximation of the network output.
Although it is not precise, under a fixed AppVer, this value
is correlated with the real satisfaction level that can be
computed by the real output region, and so it can be used
to indicate the potentiality of counterexamples. Specifically,
in the case where p is negative, the greater |p| is, the more
likely that the sub-problem contains a counterexample.

Based on the two node attributes mentioned above, we define

counterexample potentiality of a node in Def. 1.

Definition 1 (Counterexample potentiality): Let I' be a node
that has depth depth(T') and verifier evaluation p (with a
counterexample & if p < 0). The counterexample potentiality
[T] € [0,1] U {+0o0, —oo} of T is computed as follows:

— 0 if p>0
[T] :== < 400 if p <0 and valid(&)
)\“LI?(F) +(1- /\)ﬁfiu otherwise

where A € [0,1] is a parameter that controls the weights of

the two attributes, and K is the total number of neurons (i.e.,

ReLUs) in the network.

Def. 1 characterizes the likelihood of containing counterex-
amples in a node I', in the following way:

e If p > 0, there is no chance to find a counterexample in T,
and so [I'] = —oc;

e If p < 0 and & is a valid one, it means that a counterexample
is already found, so [I'] = +o0;

e Otherwise, [I'] is determined by the node attributes as
mentioned above, and we use a hyperparameter A to adjust
the weights of the two attributes.

In §IV-B, we present our efficient BaB-based verification
approach, by exploiting this counterexample potentiality to
guide the exploration of sub-problem space.

B. MCTS-Style Tree Exploration for BaB-Based Verification

We present our MCTS-style BaB tree exploration algorithm
for verification of neural networks. The idea is that, we use
counterexample potentiality to guide the search towards the
sub-problems that are more likely to find counterexamples, so
compared to the naive BaB, our tree exploration is imbalanced
and favors the branches that are more “promising”.

Our verification algorithm is presented in Alg. 1, and see
Fig. 2 for an illustration of the different stages of the algorithm.

Initialization. Alg. 1 starts with handling the root node, which
identifies the original verification problem. It applies AppVer to
the problem, and obtains the returned p and & (in case p < 0)
(Line 1). If p > 0, or p < 0 and & is valid, the verification
can be concluded (Line 8); otherwise, i.e., p < 0 is a false
alarm, so the problem needs to be split. Here, we use R(I") to
record the reward of the node T" (Line 2), and 7 (T') to record
the (sub-)tree (i.e., the set of nodes in the tree) that has I' as
its root (Line 3). Later, we will show that these two structures
are helpful to explore the tree by the mechanism of MCTS.

Algorithm 1 ABONN: An MCTS-style verification algorithm

Require: A neural network N, input and output specification & and W, an
approximated verifier AppVer(-), a ReLU selection heuristic H(-), and
hyperparameters A and c.

Ensure: A verdict € {true, false, timeout}

¢ (p,®) < AppVer(N,®, ¥, ¢)
1 R(e) « [e]
: T(e) « {e}
: if p < 0 and not valid(&) then
while not reach termination condition do
MCTS-BAB(e, N, &,)
true if R(e) = —o0
if R(e) = +o0
timeout otherwise

aUuswy e

7 return < false

8: else

9: return true lfIf >0 .
false if p < 0 and valid(&)

10: function MCTS-BAB(T, N, &,)

11: 7, < HD)

122 ifT-r} €T then

. *) /2In [T(D)]
13: I« argmax, .« + -y (R(F a)+c (el)

> Select a child by UCB1

> select a ReLU

14: MCTS-BAB(I'™*, N, &, ¥) > recursive call
15: else

16: for a € {r:, . } do

17: (p, &) < AppVer(N,®, ¥, I - a)

18: R(T -a) <+ [T -d]

19: T(C-a)+ {T-a}

20: R(I') - argmax ctrf) [T-a] > back-propagate rewards

2 TM« TOUTE-rHUTT-ry,)

> record new nodes

Expansion. The function MCTS-BAB goes through an MCTS
workflow. Given a node T, it first checks whether the children of
T" have been expanded. If not yet, it expands the children of T,
by splitting the problem identified by I into sub-problems. The
two sub-problems are respectively identified by F~7',:r and -1,
where 7y, is the ReLU selected by H in Line 11. The algorithm
applies AppVer to each of the sub-problems (Line 17). Based
on the results, it computes the counterexample potentiality and
records it as reward (Line 18), and uses T to record the newly
expanded children (Line 19).

Back-Propagation. After expansion, it propagates the rewards
and visits backwards to the ancestors of the new nodes, until
the root node. In terms of rewards, the reward of the parent
node will be updated to be the maximal reward of its children
(Line 20); moreover, the newly expanded nodes will be added
to T of the parent node (Line 21).

Selection. If all children of a node I' have been expanded, it
needs to select a child to proceed. In line with normal MCTS,
it selects by UCBI1 [11], which is an algorithm that favors not
only the branches that have greater rewards, but also considers
the branches that are less visited, because rewards may not
always be accurate to reflect the likelihood of counterexample
existence in different sub-problems. UCB1 algorithm is given
in Line 13 of Alg. 1: it selects a child of I' by comparing an
aggregated value of their rewards and visits. In particular, the
first term is the reward of each child, and the second term is
inversely proportional to the number of visits of each child; a

TABLE I: Details of the benchmarks

Model Dataset Architecture Dataset #Neurons | # Instances
MNISTy2 2 X 256 linear MNIST 512 112
MNISTrq 4 x 256 linear MNIST 1024 104

CIFAR-10BASE | 2 Conv, 2 linear | CIFAR-10 4852 115
CIFAR-10WIDE | 2 Conv, 2 linear | CIFAR-10 6244 101
CIFAR-10DEEP | 4 Conv, 2 linear | CIFAR-10 6756 120

hyperparameter c is used to strike a balance of the two terms.

Termination. The algorithm is terminated until the termination

condition is reached (Line 5). In particular, there are three

conditions, and it suffices to meet one of them to terminate:

e R(€) = 4o0: it implies that a real counterexample has been
found, and so verification can be terminated with false;

e R(e) = —oo: it implies that all of sub-problems have been
verified, and so verification can be terminated with true;

o timeout: If the time budget is used up, verification should
also be terminated without meaningful conclusion.

V. EXPERIMENTAL EVALUATION

A. Experiment Settings

Baseline and Metrics. We compare with two state-of-the-art

verification approaches, namely, BaB-baseline and «3-Crown.

The evaluation metrics include the number of instances solved

and the average time cost of each approach. We also compute

the speedup of ABONN for individual verification problems

w.r.t. the BaB-baseline. Our baselines are as follows:

e BaB-baseline: The naive BaB as introduced in $IIIL, i.e., it
explores sub-problem space in a “breadth-first” manner;

e a3-Crown [8], [13]: The state-of-the-art verification tool
according to [3], that features various sophisticated heuristics
for performance improvement.

Our implementation of ABONN adopts the same approximated

verifiers [7], [16] and ReLU selection heuristic [14] as that of

BaB-baseline. For the hyperparameters in Alg. 1, as a default

version of our tool, we set A as 0.5 and ¢ as 0.2; we will study

the influences of these two hyperparameters in RQ2. All the
code and data are available online'.

Benchmarks. We adopt 552 1o
verification problems about
Lo.-based local robustness
for MNIST and CIFAR-10.
These datasets are standard
benchmarks in community, *o%
widely recognized in VNN-
COMP [3], an annual com-
petition of neural network
verification. We select mean-
ingful problems that are neither too easy nor too hard to solve,
as evidenced by the distribution of the tree sizes with BaB-
baseline in Fig. 3. We evaluate two fully connected networks
with MNIST and three convolutional networks with CIFAR-
10, as shown in Table I. Moreover, Table I also presents the
number of specifications considered for each model.

=T
=3 muisT
1 CIFARL0puse
3 CIFARLOpger
B CIFARLOyor

Number of problem instances
5 o ® 5 R
5 3 8 8 8

S

1150 51-100 101-200 201-500 501-1000 1000-
Number of nodes in BaB trees

Fig. 3: The distribution of the
sizes of the BaB trees used in
our experiments

Uhttps://github.com/DeepLearning Verification/ABONN

TABLE II: RQ1 — Overall comparison of time consumption (in
seconds) and the total number of solved instances.

Model Dataset BaB-baseline af-Crown ABONN
Solved Time Solved Time Solved Time
MNIST:, 95 24511 9 19.53 92 24829
MNIST4 59 200.68 43 360.97 57 27048
CIFAR-10sase 27 78231 32 699.77 106 176.87
CIFAR-10pgep 23 749.74 40 516.25 67 369.58
CIFAR-10uipe 26 706.04 38 5203 75 246.03

Experiment Environment. Experiments ran on an AWS EC2
instance (8-core Xeon E5 2.90GHz, 16GB RAM) with 1000s
timeout per problem. GUROBI 9.1.2 was used as the solver.

B. Evaluation Results

RQ1: Efficiency of ABONN compared to baselines.

Table II shows the number of solved problems across
MNIST and CIFAR-10 and the average time costs of each
approach. ABONN demonstrates significant advantages in the
CIFAR-10 models that are relatively complex. For instance, in
CIFAR-10gass, it solves 79 more instances than BaB-baseline,
and 74 more than «8-Crown within the time budget. In MNIST
models that are less complex, ABONN exhibits comparable
performance with the baseline approaches. These results show
the efficiency of ABONN in handling complex models.

In the scatter plots of Fig. 4, x-axis denotes the time cost
for individual problems of ABONN, and y-axis denotes the
speedup (i.e., %) of ABONN over BaB-baseline. It
reveals significant performance improvement across different
models, we can observe many instances for which ABONN
outperforms BaB-baseline. In MNIST, the speedups are around
1-5 times, and in CIFAR-10, the speedups are around 20-80
times. In many cases, while BaB-baseline struggles, ABONN
manages to solve the problems very efficiently.

RQ2: Impacts of hyperparameter selection on ABONN.

Figures 5a, 5b, and 5c illustrate the impact of hyperparame-
ters (A in counterexample potentiality, Def. 1 and ¢ in UCBI,
Line 13 of Alg. 1) to the performance of ABONN.

Regarding the selection of A, all the plots show that A = 0.5
is the best choice. The value A = 0.5 aims at a balance between
the two node attributes in counterexample potentiality, and the
results show that the likelihood of counterexample existence is
closely correlated to both of the two attributes.

The hyperparameter c is crucial in MCTS [17], which decides
the extent to which it favors “exploitation” or “exploration”.
While in Fig. 5a ¢ = 0.2 (i.e., balance between “exploitation”
and “exploration” to some extent) is a bit weaker than ¢ = 0
(i.e., pure exploitation), in Fig. 5b and Fig. 5c, ¢ = 0.2 is
the best performer. This indicates that, 1) our counterexample
potentiality is effective as a search guidance, so even pure
exploitation performs well; 2) pure exploitation may be superior
in individual problems, but not as good as the balanced strategy
in average performance. So, it is meaningful to strike a balance
between “exploitation” and “exploration” in our MCTS.

RQ3: Comparison between BaB-baseline and ABONN for
violated and certified verification problems.

)
o
N
a

@
=)

[N
o o
[EEN]
o o
o
=)

IS
S

3

4

-
o
=
o

Speedup ratio
Speedup ratio

Speedup ratio

v

«
N
)

dx
$ D a0

o
=)

o ®
S S}

IS
S

Speedup ratio
IS
S
Speedup ratio

N
)

%

e

>

o

o
o

@w o @ a

400 600
Time(s)

400 200
Time(s)

0 200 600 800 0 800 0

(a) MNISTy, (b) MNISTy,

- oL
200 400 600 800 1000 0

(C) CIFAR-1 OBASE

o - o
0 200 400 600 800 1000
Time(s)

200 400 600 800 1000

Time(s) Time(s)

(d) CIFAR—:LODEEP (e) CIFAR—10WIDE

Fig. 4: RQ1 — Comparison of ABONN over BaB-baseline in time costs and speedup. Each blue dot stands for a problem.

096 096 0.96 0.96 PN 377.88 383.37 392.29 389.24 389.37 392.45
0.99 0.98 PR 375.86 339.13 403.26 370.52 413.56 410.70
A1.0{ 085 0.85 0.8 0.86 087 0.89 A: 1.01{546.56 547.48 536.42 528.37 505.48 489.62 A 1.0{43.00 43.00 44.00 44.00 47.00 48.00
c:dO c:62 c:bA c:dﬁ c:dB c:io c:dO c:dz c:d4 c:de c:ds c:iO c:do c:dZ c:d4 c:d6 c:dS c:io
(a) Avg. speedup (w.r.t. BaB-baseline) (b) Avg. time (secs) (c) Number of solved problems

Fig. 5: RQ2 — Impact of hyperparameter selection across different A and c. A darker cell implies a better performance.

Violated instance ~ Certified instance Violated instance Certified instance

- e
i a -
o = & 0 a
BaB-baseline ABONN BaB-baseline ABONN BaB-baseline ABONN BaB-baseline ABONN

(b) CIFAR-10pgzs

(a) MNIST1,

Fig. 6: RQ3 — Comparison between BaB-baseline and ABONN
for violated and certified verification problems

The box plots in Fig. 6 shows the breakdown of the verifica-
tion time, respectively for violated problems and for certified
problems, of MNIST;, and CIFAR-10pggp-

In Fig. 6a, ABONN exhibits a smaller interquartile range than
BaB-baseline for violated instances. For certified instances, the
two approaches are almost the same. This certifies that ABONN
is indeed superior in finding counterexamples compared to
BaB-baseline, and so it outperforms BaB-baseline when dealing
with violated verification problems. For certified instances, it
performs similarly to BaB-baseline, which is also expected.

In Fig. 6b, similarly, ABONN exhibits its superiority in han-
dling violated verification problems, evidently outperforming
BaB-baseline. While BaB-baseline used up the time budget
(1000s) for many problems, ABONN solves them much more
efficiently. Surprisingly, ABONN also demonstrates outperfor-
mance in certified instances, which means that it manages
to verify the problems by visiting less sub-problems. This
should result from a mutual influence between the ReLU se-
lection heuristic [14] and our adaptive tree exploration strategy,
namely, our strategy manages to lead the heuristic to a better
ReLU selection. In future work, we will delve more into the
impact of our strategy to ReLU selection.

VI. RELATED WORK

Neural Network Verification. Neural network verification has
been extensively studied in the past decade [5], [7], [18]-[23]

and approximated methods are often preferable thanks to their
efficiency [24]-[29]. In particular, there is a line of work [30]—
[32] that exploits information from (spurious) counterexamples
to refine the abstraction (i.e., CEGAR [33]). In contrast, we
do not use counterexamples to refine the approximation of
verifiers, but we explore the sub-problem space of BaB guided
by the possibility of finding counterexamples.

Branching Strategies in BaB. Many studies [10], [14], [15],
[34]-[36] aim to optimize the branching strategy (i.e., H in
Alg. 1) to pursue better abstraction refinement. In contrast, our
approach is orthogonal to that line of works, and we can adopt
any of those strategies in our algorithm. Essentially, we change
the way of tree growth in BaB by favoring those branches that
are more “promising”, rather than the way of problem splitting.
Testing and Attacks. Testing and attacks aim to efficiently gen-
erate counterexamples to fool the network, and they have been
extensively studied [2], [37]-[42]. Although these approaches
are efficient, they cannot provide rigorous guarantee on the
quality of the networks, even if they fail to detect counterex-
amples. In comparison, in line with BaB, our approach is a
verification approach that can provide rigorous proofs about
specification satisfaction, after verifying all the sub-problems.

VII. CONCLUSION AND FUTURE WORK

We propose a neural network verification approach that
features adaptive exploration of the sub-problems produced by
BaB. ABONN is guided by counterexample potentiality, so we
can efficiently find the sub-problems that contain counterexam-
ples. Experimental evaluation demonstrates the superiority of
our proposed approach in efficiency over existing baselines.

As future work, we aim to investigate how our approach
can be used to improve ReLU selection heuristics, such as
DeepSplit [14], such that we can further accelerate verification.

ACKNOWLEDGEMENTS

This research is supported by JSPS KAKENHI Grant No.
JP23H03372, No. JP23K16865, JST-Mirai Grant No. JP-
MIMI20B8, and Australian Research Grant FT220100391.

(1]

(2]

[3]

(4]

[5

—_

[6

=

[7

—

[8

—

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, M. J. Kochenderfer
et al., “Algorithms for verifying deep neural networks,” Foundations and
Trends® in Optimization, vol. 4, no. 3-4, pp. 244-404, 2021.

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd Int. Conf. on Learning Representations
(ICLR’15). San Diego, CA, United States: Int. Conf. on Learning
Representations, ICLR, 2015.

M. N. Miiller, C. Brix, S. Bak, C. Liu, and T. T. Johnson, ‘“3rd
international verification of neural networks competition (VNN-COMP
2022): Summary and results,” arXiv preprint arXiv:2212.10376, 2022.
C.-H. Cheng, G. Niihrenberg, and H. Ruess, “Maximum resilience of
artificial neural networks,” in Automated Technology for Verification and
Analysis, D. D’Souza and K. Narayan Kumar, Eds. Springer Int.
Publishing, 2017, pp. 251-268.

V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural
networks with mixed integer programming,” in Int. Conf. on Learning
Representations, 2018.

G. Singh, T. Gehr, M. Mirman, M. Piischel, and M. Vechev, “Fast
and effective robustness certification,” Advances in neural information
processing systems, vol. 31, 2018.

G. Singh, T. Gehr, M. Piischel, and M. Vechev, “An abstract domain for
certifying neural networks,” ACM on Programming Languages, vol. 3,
no. POPL, pp. 1-30, 2019.

H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient
neural network robustness certification with general activation functions,”
Advances in Neural Information Processing Systems, vol. 31, 2018.

E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in Int. Conf. on Machine
Learning. PMLR, 2018, pp. 5286-5295.

R. Bunel, P. Mudigonda, I. Turkaslan, P. Torr, J. Lu, and P. Kohli, “Branch
and bound for piecewise linear neural network verification,” Journal of
Machine Learning Research, vol. 21, no. 2020, 2020.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and Al in games, vol. 4, no. 1, pp. 1-43,
2012.

S. Ugare, D. Banerjee, S. Misailovic, and G. Singh, “Incremental veri-
fication of neural networks,” ACM on Programming Languages, vol. 7,
no. PLDI, pp. 1920-1945, 2023.

S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z.
Kolter, “Beta-crown: Efficient bound propagation with per-neuron split
constraints for neural network robustness verification,” Advances in
Neural Information Processing Systems, vol. 34, pp. 29 909-29 921, 2021.
P. Henriksen and A. Lomuscio, “Deepsplit: An efficient splitting method
for neural network verification via indirect effect analysis.” in IJCAI,
2021, pp. 2549-2555.

A. De Palma, R. Bunel, A. Desmaison, K. Dvijotham, P. Kohli, P. H. Torr,
and M. P. Kumar, “Improved branch and bound for neural network veri-
fication via lagrangian decomposition,” arXiv preprint arXiv:2104.06718,
2021.

G. Singh, T. Gehr, M. Mirman, M. Piischel, and M. Vechev, “Fast and
effective robustness certification,” in Advances in Neural Information
Processing Systems, vol. 31, 2018.

Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini, and 1. Hasuo, “Two-
layered falsification of hybrid systems guided by monte carlo tree search,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2894-2905, 2018.

G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
in Computer Aided Verification, R. Majumdar and V. Kuncak, Eds.
Springer Int. Publishing, 2017, pp. 97-117.

R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in Automated Technology for Verification and Analysis: 15th
Int. Symp., ATVA 2017, Proceedings 15. Springer, Oct. 2017, pp. 269—
286.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification of
deep neural networks,” in Computer Aided Verification: 29th Int. Conf.,
CAV 2017, Part I 30. Springer, July 2017, pp. 3-29.

C. Miiller, G. Singh, M. Piischel, and M. T. Vechev, “Neural network
robustness verification on gpus,” CoRR, abs/2007.10868, 2020.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33

—

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Efficient formal
safety analysis of neural networks,” Advances in neural information
processing systems, vol. 31, 2018.

Z. Shi, Y. Wang, H. Zhang, J. Z. Kolter, and C.-J. Hsieh, “Efficiently
computing local lipschitz constants of neural networks via bound prop-
agation,” Advances in Neural Information Processing Systems, vol. 35,
pp. 2350-2364, 2022.

R. Anderson, J. Huchette, C. Tjandraatmadja, and J. Vielma, “Strong
convex relaxations and mixed-integer programming formulations for
trained neural networks (2018),” 1811.

C. Tjandraatmadja, R. Anderson, J. Huchette, W. Ma, K. K. Patel, and
J. P. Vielma, “The convex relaxation barrier, revisited: Tightened single-
neuron relaxations for neural network verification,” Advances in Neural
Information Processing Systems, vol. 33, pp. 21 675-21 686, 2020.

G. Singh, R. Ganvir, M. Piischel, and M. Vechev, “Beyond the single
neuron convex barrier for neural network certification,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

M. N. Miiller, G. Makarchuk, G. Singh, M. Piischel, and M. Vechev,
“Prima: general and precise neural network certification via scalable
convex hull approximations,” ACM on Programming Languages, vol. 6,
no. POPL, pp. 1-33, 2022.

——, “Precise multi-neuron abstractions for neural network certification,”
arXiv preprint arXiv:2103.03638, 2021.

A. Raghunathan, J. Steinhardt, and P. S. Liang, “Semidefinite relaxations
for certifying robustness to adversarial examples,” Advances in neural
information processing systems, vol. 31, 2018.

P. Yang, R. Li, J. Li, C.-C. Huang, J. Wang, J. Sun, B. Xue, and L. Zhang,
“Improving neural network verification through spurious region guided
refinement,” in Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2021, pp. 389-408.

M. Ostrovsky, C. Barrett, and G. Katz, “An abstraction-refinement
approach to verifying convolutional neural networks,” in International
Symposium on Automated Technology for Verification and Analysis.
Springer, 2022, pp. 391-396.

Z. Zhao, Y. Zhang, G. Chen, F. Song, T. Chen, and J. Liu, “Cleverest:
accelerating cegar-based neural network verification via adversarial at-
tacks,” in International Static Analysis Symposium. Springer, 2022, pp.
449-473.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Computer Aided Verification: 12th
International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000.
Proceedings 12. Springer, 2000, pp. 154-169.

Z. Shi, Q. Jin, Z. Kolter, S. Jana, C.-J. Hsieh, and H. Zhang, ‘“Neural
network verification with branch-and-bound for general nonlinearities,”
arXiv preprint arXiv:2405.21063, 2024.

J. Lu and M. P. Kumar, “Neural network branching for neural network
verification,” arXiv preprint arXiv:1912.01329, 2019.

C. Ferrari, M. N. Muller, N. Jovanovic, and M. Vechev, “Complete
verification via multi-neuron relaxation guided branch-and-bound,” arXiv
preprint arXiv:2205.00263, 2022.

K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in 26th Symp. on Operating Systems
Principles, 2017, pp. 1-18.

A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “Tensorfuzz: De-
bugging neural networks with coverage-guided fuzzing,” in International
Conference on Machine Learning. PMLR, 2019, pp. 4901-4911.

M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square
attack: a query-efficient black-box adversarial attack via random search,”
in European conference on computer vision. Springer, 2020, pp. 484—
501.

C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille,
“Improving transferability of adversarial examples with input diversity,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 2730-2739.

H. Zhang, S. Wang, K. Xu, Y. Wang, S. Jana, C.-J. Hsieh, and Z. Kolter,
“A branch and bound framework for stronger adversarial attacks of relu
networks,” in International Conference on Machine Learning. PMLR,
2022, pp. 26 591-26 604.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp). leee,
2017, pp. 39-57.

