
CGO 2016, March 15th, Barcelona

Sparse Flow-Sensitive Pointer Analysis
For Multithreaded Programs

Yulei Sui, Peng Di and Jingling Xue

School of Computer Science and Engineering
The University of New South Wales

2052 Sydney Australia

March 15, 2016

1 / 1

CGO 2016, March 15th, Barcelona

Contributions

• The first sparse flow-sensitive pointer analysis for
unstructured multithreaded programs (C with Pthread)

• A series of static thread interference analyses by
reasoning about fork/join, memory accesses, lock/unlock
to generate value-flows among threads.

• Significantly faster than non-sparse algorithm and scales
to large size multithreaded Pthread programs with up to
100KLOC.

2 / 1

CGO 2016, March 15th, Barcelona

Outline

• Background and Motivation
• Our approach: FSAM
• Evalution

2 / 1

CGO 2016, March 15th, Barcelona

Pointer Analysis

Pointer Analysis is to statically approximate runtime values of a
pointer

A fundamental enabling technology for many other program
analyses and optimisations.
• Compiler optimisations (e.g., Auto-Vectorization)
• Memory errors (e.g., Null pointer and use-after-free)
• Concurrency bugs (e.g., Data race, dead lock detection)
• Security (e.g., Control-flow integrity enforcement)
• Accelerating dynamic analysis (e.g., MemSan, TSan)
• ...

3 / 1

CGO 2016, March 15th, Barcelona

Pointer Analysis

Pointer Analysis is to statically approximate runtime values of a
pointer

A fundamental enabling technology for many other program
analyses and optimisations.
• Compiler optimisations (e.g., Auto-Vectorization)
• Memory errors (e.g., Null pointer and use-after-free)
• Concurrency bugs (e.g., Data race, dead lock detection)
• Security (e.g., Control-flow integrity enforcement)
• Accelerating dynamic analysis (e.g., MemSan, TSan)
• ...

3 / 1

CGO 2016, March 15th, Barcelona

Flow-Insensitive v.s. Flow-Sensitive Analysis
Flow-Insensitive Pointer Analysis:
• Ignore program execution order
• A single solution across whole program

Flow-Sensitive Pointer Analysis:
• Respect program control-flow
• A separate solution at each program point

p = & a

*p = & b

*p = & c

q = *p

p → a
a → b, c
q → b, c

Flow-Insensitive Analysis

p = & a

*p = & b

*p = & c

q = *p

p → a
a → b, c
q → b, c

Flow-Insensitive Analysis

p = & a

*p = & b

*p = & c

q = *p

p → a

a → b

Flow-sensitive Analysis

p → a

a → cp → a

a → cp → a q → c

4 / 1

CGO 2016, March 15th, Barcelona

Flow-Insensitive v.s. Flow-Sensitive Analysis
Flow-Insensitive Pointer Analysis:
• Ignore program execution order
• A single solution across whole program

Flow-Sensitive Pointer Analysis:
• Respect program control-flow
• A separate solution at each program point

p = & a

*p = & b

*p = & c

q = *p

p → a
a → b, c
q → b, c

Flow-Insensitive Analysis

p = & a

*p = & b

*p = & c

q = *p

p → a
a → b, c
q → b, c

Flow-Insensitive Analysis

p = & a

*p = & b

*p = & c

q = *p

p → a

a → b

Flow-sensitive Analysis

p → a

a → cp → a

a → cp → a q → c

4 / 1

CGO 2016, March 15th, Barcelona

Flow-Insensitive v.s. Flow-Sensitive Analysis
Flow-Insensitive Pointer Analysis:
• Ignore program execution order
• A single solution across whole program

Flow-Sensitive Pointer Analysis:
• Respect program control-flow
• A separate solution at each program point

p = & a

*p = & b

*p = & c

q = *p

p → a
a → b, c
q → b, c

Flow-Insensitive Analysis

p = & a

*p = & b

*p = & c

q = *p

p → a
a → b, c
q → b, c

Flow-Insensitive Analysis

p = & a

*p = & b

*p = & c

q = *p

p → a

a → b

Flow-sensitive Analysis

p → a

a → cp → a

a → cp → a q → c

4 / 1

CGO 2016, March 15th, Barcelona

Flow-Insensitive v.s. Flow-Sensitive Analysis
Flow-Insensitive Pointer Analysis:
• Ignore program execution order
• A single solution across whole program

Flow-Sensitive Pointer Analysis:
• Respect program control-flow
• A separate solution at each program point

p = & a

*p = & b

*p = & c

q = *p

p → a
a → b, c
q → b, c

Flow-Insensitive Analysis

p = & a

*p = & b

*p = & c

q = *p

p → a
a → b, c
q → b, c

Flow-Insensitive Analysis

p = & a

*p = & b

*p = & c

q = *p

p → a

a → b

Flow-sensitive Analysis

p → a

a → cp → a

a → cp → a q → c

4 / 1

CGO 2016, March 15th, Barcelona

Flow-Insensitive v.s. Flow-Sensitive Analysis
Flow-Insensitive Pointer Analysis:
• Ignore program execution order
• A single solution across whole program

Flow-Sensitive Pointer Analysis:
• Respect program control-flow
• A separate solution at each program point

p = & a

*p = & b

*p = & c

q = *p

p → a
a → b, c
q → b, c

Flow-Insensitive Analysis

p = & a

*p = & b

*p = & c

q = *p

p → a
a → b, c
q → b, c

Flow-Insensitive Analysis

p = & a

*p = & b

*p = & c

q = *p

p → a

a → b

Flow-sensitive Analysis

p → a

a → cp → a

a → cp → a q → c

4 / 1

CGO 2016, March 15th, Barcelona

Sparse Flow-Sensitive Analysis
• Propagate points-to information only along pre-computed

def-use chains instead of control-flow

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
p → a a → c x → m m → d

q = *p

y = *x
p → a a → c x → m y → dm → d

p → a a → c x → m y → dm → d q → c

x → m

x → m

Data-flow-based flow-sensitive analysis

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
p → a a → c x → m m → d

q = *p

y = *x
p → a a → c x → m y → dm → d

p → a a → c x → m y → dm → d q → c

x → m

x → m

Data-flow-based flow-sensitive analysis

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
p → a a → c x → m m → d

q = *p

y = *x
p → a a → c x → m y → dm → d

p → a a → c x → m y → dm → d q → c

x → m

x → m

Data-flow-based flow-sensitive analysis

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
x → m m → d

q = *p

y = *x
x → m y → dm → d

p → a a → c q → c

[a]

[a] [m]

Sparse flow-sensitive analysis
(Hardekopf and Lin. - CGO’11) (Ye, Sui and Xue. - SAS ’14)

5 / 1

CGO 2016, March 15th, Barcelona

Sparse Flow-Sensitive Analysis
• Propagate points-to information only along pre-computed

def-use chains instead of control-flow

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
p → a a → c x → m m → d

q = *p

y = *x
p → a a → c x → m y → dm → d

p → a a → c x → m y → dm → d q → c

x → m

x → m

Data-flow-based flow-sensitive analysis

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
p → a a → c x → m m → d

q = *p

y = *x
p → a a → c x → m y → dm → d

p → a a → c x → m y → dm → d q → c

x → m

x → m

Data-flow-based flow-sensitive analysis

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
p → a a → c x → m m → d

q = *p

y = *x
p → a a → c x → m y → dm → d

p → a a → c x → m y → dm → d q → c

x → m

x → m

Data-flow-based flow-sensitive analysis

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
x → m m → d

q = *p

y = *x
x → m y → dm → d

p → a a → c q → c

[a]

[a] [m]

Sparse flow-sensitive analysis
(Hardekopf and Lin. - CGO’11) (Ye, Sui and Xue. - SAS ’14)

5 / 1

CGO 2016, March 15th, Barcelona

Sparse Flow-Sensitive Analysis
• Propagate points-to information only along pre-computed

def-use chains instead of control-flow

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
p → a a → c x → m m → d

q = *p

y = *x
p → a a → c x → m y → dm → d

p → a a → c x → m y → dm → d q → c

x → m

x → m

Data-flow-based flow-sensitive analysis

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
p → a a → c x → m m → d

q = *p

y = *x
p → a a → c x → m y → dm → d

p → a a → c x → m y → dm → d q → c

x → m

x → m

Data-flow-based flow-sensitive analysis

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
p → a a → c x → m m → d

q = *p

y = *x
p → a a → c x → m y → dm → d

p → a a → c x → m y → dm → d q → c

x → m

x → m

Data-flow-based flow-sensitive analysis

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
x → m m → d

q = *p

y = *x
x → m y → dm → d

p → a a → c q → c

[a]

[a] [m]

Sparse flow-sensitive analysis
(Hardekopf and Lin. - CGO’11) (Ye, Sui and Xue. - SAS ’14)

5 / 1

CGO 2016, March 15th, Barcelona

Sparse Flow-Sensitive Analysis
• Propagate points-to information only along pre-computed

def-use chains instead of control-flow

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
p → a a → c x → m m → d

q = *p

y = *x
p → a a → c x → m y → dm → d

p → a a → c x → m y → dm → d q → c

x → m

x → m

Data-flow-based flow-sensitive analysis

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
p → a a → c x → m m → d

q = *p

y = *x
p → a a → c x → m y → dm → d

p → a a → c x → m y → dm → d q → c

x → m

x → m

Data-flow-based flow-sensitive analysis

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
p → a a → c x → m m → d

q = *p

y = *x
p → a a → c x → m y → dm → d

p → a a → c x → m y → dm → d q → c

x → m

x → m

Data-flow-based flow-sensitive analysis

...
p → a x → m

*p = & b
p → a a → b

*p = & c
p → a a → c

*x = & d
x → m m → d

q = *p

y = *x
x → m y → dm → d

p → a a → c q → c

[a]

[a] [m]

Sparse flow-sensitive analysis
(Hardekopf and Lin. - CGO’11) (Ye, Sui and Xue. - SAS ’14)

5 / 1

CGO 2016, March 15th, Barcelona

Flow-Sensitivity Under Thread Interleaving

 s1 : *p = & b

 s2 : *p = & c

 s3 : q = *p

Thread 1

[a]

[a]

 s2 : *p = & c

 s3 : q = *p

Thread 1

 fork(t2, foo)

Thread 2

 foo(){

 s1 : *p = & b

}

Interleaving
execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b[a]

[a]

Scenario 1:

execution sequence : s2, s1, s3 points-to of q : pt(q) = {b}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b

[a]

[a]

Scenario 2:

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

execution sequence : s2, s3, s1 points-to of q : pt(q) = {c}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b

[a]

Scenario 3:

execution sequence : s2, s1, s3 points-to of q : pt(q) = {b}

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

 fork(t2, foo)

 s2 : *p = & c
 s3 : q = *p

Thread 1 Thread 2

 foo(){

 s1 : *p = & b

}

(a) non-interference via join

join(t2)

 fork(t2, foo)

 s2 : *p = & c
 s3 : q = *p

Thread 1 Thread 2

 foo(){

 s1 : *p = & b

}

(b) non-interference via lock/unlock

lock(l)

unlock(l)

points-to of q: pt(q) = {c}

lock(l)

unlock(l)

6 / 1

CGO 2016, March 15th, Barcelona

Flow-Sensitivity Under Thread Interleaving

 s1 : *p = & b

 s2 : *p = & c

 s3 : q = *p

Thread 1

[a]

[a]

 s2 : *p = & c

 s3 : q = *p

Thread 1

 fork(t2, foo)

Thread 2

 foo(){

 s1 : *p = & b

}

Interleaving

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b[a]

[a]

Scenario 1:

execution sequence : s2, s1, s3 points-to of q : pt(q) = {b}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b

[a]

[a]

Scenario 2:

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

execution sequence : s2, s3, s1 points-to of q : pt(q) = {c}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b

[a]

Scenario 3:

execution sequence : s2, s1, s3 points-to of q : pt(q) = {b}

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

 fork(t2, foo)

 s2 : *p = & c
 s3 : q = *p

Thread 1 Thread 2

 foo(){

 s1 : *p = & b

}

(a) non-interference via join

join(t2)

 fork(t2, foo)

 s2 : *p = & c
 s3 : q = *p

Thread 1 Thread 2

 foo(){

 s1 : *p = & b

}

(b) non-interference via lock/unlock

lock(l)

unlock(l)

points-to of q: pt(q) = {c}

lock(l)

unlock(l)

6 / 1

CGO 2016, March 15th, Barcelona

Flow-Sensitivity Under Thread Interleaving

 s1 : *p = & b

 s2 : *p = & c

 s3 : q = *p

Thread 1

[a]

[a]

 s2 : *p = & c

 s3 : q = *p

Thread 1

 fork(t2, foo)

Thread 2

 foo(){

 s1 : *p = & b

}

Interleaving

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b[a]

[a]

Scenario 1:

execution sequence : s2, s1, s3 points-to of q : pt(q) = {b}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b

[a]

[a]

Scenario 2:

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

execution sequence : s2, s3, s1 points-to of q : pt(q) = {c}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b

[a]

Scenario 3:

execution sequence : s2, s1, s3 points-to of q : pt(q) = {b}

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

 fork(t2, foo)

 s2 : *p = & c
 s3 : q = *p

Thread 1 Thread 2

 foo(){

 s1 : *p = & b

}

(a) non-interference via join

join(t2)

 fork(t2, foo)

 s2 : *p = & c
 s3 : q = *p

Thread 1 Thread 2

 foo(){

 s1 : *p = & b

}

(b) non-interference via lock/unlock

lock(l)

unlock(l)

points-to of q: pt(q) = {c}

lock(l)

unlock(l)

6 / 1

CGO 2016, March 15th, Barcelona

Flow-Sensitivity Under Thread Interleaving

 s1 : *p = & b

 s2 : *p = & c

 s3 : q = *p

Thread 1

[a]

[a]

 s2 : *p = & c

 s3 : q = *p

Thread 1

 fork(t2, foo)

Thread 2

 foo(){

 s1 : *p = & b

}

Interleaving
execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b[a]

[a]

Scenario 1:

execution sequence : s2, s1, s3 points-to of q : pt(q) = {b}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b

[a]

[a]

Scenario 2:

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

execution sequence : s2, s3, s1 points-to of q : pt(q) = {c}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b

[a]

Scenario 3:

execution sequence : s2, s1, s3 points-to of q : pt(q) = {b}

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

 fork(t2, foo)

 s2 : *p = & c
 s3 : q = *p

Thread 1 Thread 2

 foo(){

 s1 : *p = & b

}

(a) non-interference via join

join(t2)

 fork(t2, foo)

 s2 : *p = & c
 s3 : q = *p

Thread 1 Thread 2

 foo(){

 s1 : *p = & b

}

(b) non-interference via lock/unlock

lock(l)

unlock(l)

points-to of q: pt(q) = {c}

lock(l)

unlock(l)

6 / 1

CGO 2016, March 15th, Barcelona

Flow-Sensitivity Under Thread Interleaving

 s1 : *p = & b

 s2 : *p = & c

 s3 : q = *p

Thread 1

[a]

[a]

 s2 : *p = & c

 s3 : q = *p

Thread 1

 fork(t2, foo)

Thread 2

 foo(){

 s1 : *p = & b

}

Interleaving
execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b[a]

[a]

Scenario 1:

execution sequence : s2, s1, s3 points-to of q : pt(q) = {b}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b

[a]

[a]

Scenario 2:

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

execution sequence : s2, s3, s1 points-to of q : pt(q) = {c}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b

[a]

Scenario 3:

execution sequence : s2, s1, s3 points-to of q : pt(q) = {b}

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

 fork(t2, foo)

 s2 : *p = & c
 s3 : q = *p

Thread 1 Thread 2

 foo(){

 s1 : *p = & b

}

(a) non-interference via join

join(t2)

 fork(t2, foo)

 s2 : *p = & c
 s3 : q = *p

Thread 1 Thread 2

 foo(){

 s1 : *p = & b

}

(b) non-interference via lock/unlock

lock(l)

unlock(l)

points-to of q: pt(q) = {c}

lock(l)

unlock(l)

6 / 1

CGO 2016, March 15th, Barcelona

Flow-Sensitivity Under Thread Interleaving

 s1 : *p = & b

 s2 : *p = & c

 s3 : q = *p

Thread 1

[a]

[a]

 s2 : *p = & c

 s3 : q = *p

Thread 1

 fork(t2, foo)

Thread 2

 foo(){

 s1 : *p = & b

}

Interleaving
execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b[a]

[a]

Scenario 1:

execution sequence : s2, s1, s3 points-to of q : pt(q) = {b}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b

[a]

[a]

Scenario 2:

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

execution sequence : s2, s3, s1 points-to of q : pt(q) = {c}

 s2 : *p = & c

 s3 : q = *p

Thread 1 Thread 2

 s1 : *p = & b

[a]

Scenario 3:

execution sequence : s2, s1, s3 points-to of q : pt(q) = {b}

execution sequence : s1, s2, s3 points-to of q : pt(q) = {c}

 fork(t2, foo)

 s2 : *p = & c
 s3 : q = *p

Thread 1 Thread 2

 foo(){

 s1 : *p = & b

}

(a) non-interference via join

join(t2)

 fork(t2, foo)

 s2 : *p = & c
 s3 : q = *p

Thread 1 Thread 2

 foo(){

 s1 : *p = & b

}

(b) non-interference via lock/unlock

lock(l)

unlock(l)

points-to of q: pt(q) = {c}

lock(l)

unlock(l)

6 / 1

CGO 2016, March 15th, Barcelona

Outline

• Background and Motivation
• Our approach: FSAM
• Evalution

6 / 1

CGO 2016, March 15th, Barcelona

FSAM: Sparse Flow-Sensitive Analysis For
Multithreaded Programs

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

7 / 1

CGO 2016, March 15th, Barcelona

FSAM: Sparse Flow-Sensitive Analysis For
Multithreaded Programs

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

7 / 1

CGO 2016, March 15th, Barcelona

FSAM: Sparse Flow-Sensitive Analysis For
Multithreaded Programs

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

7 / 1

CGO 2016, March 15th, Barcelona

FSAM: Sparse Flow-Sensitive Analysis For
Multithreaded Programs

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

7 / 1

CGO 2016, March 15th, Barcelona

FSAM: Sparse Flow-Sensitive Analysis For
Multithreaded Programs

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

7 / 1

CGO 2016, March 15th, Barcelona

Context-Sensitive Abstract Threads
An abstract thread t refers to a call of pthread create() at a
context-sensitive fork site during the analysis.

void main(){

 for(i=0;i<10;i++){
 fork(t[i], foo)
 }

}

t is multi-forked thread

void main(){

 foo();
 foo();

}

void foo(){

 fork(t1, bar);
}

cs1:
cs2:

cs3:

t1 refers to fork site
under context [1,3]

t1 and t1' are context-sensitive threads

t1' refers to fork site
under context [2,3]

void main(){

 for(i=0;i<10;i++){
 fork(t[i], foo)
 }

}

t is multi-forked thread

void main(){

 foo();
 foo();

}

void foo(){

 fork(t1, bar);
}

cs1:
cs2:

cs3:

t1 refers to fork site
under context [1,3]

t1 and t1' are context-sensitive threads

t1' refers to fork site
under context [2,3]

A thread t always refers to a context-sensitive fork site, i.e., a
unique runtime thread unless t ∈M is multi-forked, in which
case, t may represent more than one runtime thread.

8 / 1

CGO 2016, March 15th, Barcelona

Context-Sensitive Abstract Threads
An abstract thread t refers to a call of pthread create() at a
context-sensitive fork site during the analysis.

void main(){

 for(i=0;i<10;i++){
 fork(t[i], foo)
 }

}

t is multi-forked thread

void main(){

 foo();
 foo();

}

void foo(){

 fork(t1, bar);
}

cs1:
cs2:

cs3:

t1 refers to fork site
under context [1,3]

t1 and t1' are context-sensitive threads

t1' refers to fork site
under context [2,3]

void main(){

 for(i=0;i<10;i++){
 fork(t[i], foo)
 }

}

t is multi-forked thread

void main(){

 foo();
 foo();

}

void foo(){

 fork(t1, bar);
}

cs1:
cs2:

cs3:

t1 refers to fork site
under context [1,3]

t1 and t1' are context-sensitive threads

t1' refers to fork site
under context [2,3]

A thread t always refers to a context-sensitive fork site, i.e., a
unique runtime thread unless t ∈M is multi-forked, in which
case, t may represent more than one runtime thread.

8 / 1

CGO 2016, March 15th, Barcelona

Thread-Aware Value-Flows
A thread-aware def-use is added if a pair of statements (t , c, s)
and (t ′, c′, s′)

• (1) may access same memory using pre-computed results.
• (2) may happen in parallel

s : ∗p = s′ : = ∗q or ∗q =
(t , c, s) ‖ (t ′, c′, s′) o ∈ Alias(∗p, ∗q)

s
o

↪−→ s′

t t'

[o]
(t,c,s) (t',c',s')

s:*p= ... s': ...=*q

(t,c,s) || (t',c',s')

9 / 1

CGO 2016, March 15th, Barcelona

Context-sensitive Thread Interleaving Analysis

(t1, c1, s1) ‖ (t2, c2, s2) holds if:{
t2 ∈ I(t1, c1, s1) ∧ t1 ∈ I(t2, c2, s2) if t1 6= t2
t1 ∈M otherwise

where I(t , c, s): denotes a set of interleaved threads may run in
parallel with s in thread t under calling context c,
M is the set of multi-forked threads.

10 / 1

CGO 2016, March 15th, Barcelona

Interleaving Analysis

Computing I(t , c, s) is formalized as a forward data-flow
problem (V ,u,F).
• V : the set of all thread interleaving facts.
• u: meet operator (∪).
• F : V → V transfer functions associated with each node in

an ICFG.

11 / 1

CGO 2016, March 15th, Barcelona

Interleaving Analysis Rule

[I-DESCENDANT]
t

(c,fki)−−−→ t ′ (t , c, fki)→ (t , c, `) (c′, `′) = Entry(St ′)

{t ′} ⊆ I(t , c, `) {t} ⊆ I(t ′, c′, `′)

[I-SIBLING]
t ./ t ′ (c, `) = Entry(St) (c′, `′) = Entry(St ′) t 6� t ′ ∧ t ′ 6� t

{t} ⊆ I(t ′, c′, `′) {t ′} ⊆ I(t , c, `)

[I-JOIN]
t

(c,jni)←−−− t ′

I(t , c, jni) = I(t , c, jni)\{t ′}
[I-CALL]

(t , c, `)
calli−−→ (t , c′, `′) c′ = c.push(i)
I(t , c, `) ⊆ I(t , c′, `′)

[I-INTRA]
(t , c, `)→ (t , c, `′)
I(t , c, `) ⊆ I(t , c, `′) [I-RET]

(t , c, `)
reti−−→ (t , c′, `′) i = c.peek() c′ = c.pop()

I(t , c, `) ⊆ I(t , c′, `′)

12 / 1

CGO 2016, March 15th, Barcelona

Interleaving Analysis Rule

[I-DESCENDANT]
t

(c,fki)−−−→ t ′ (t , c, fki)→ (t , c, `) (c′, `′) = Entry(St ′)

{t ′} ⊆ I(t , c, `) {t} ⊆ I(t ′, c′, `′)

t t'

fork

I(t,c,s) = {t'} I(t',c',s')={t}
s s'

(t,c,s) || (t',c',s')

[I-JOIN]
t

(c,jni)←−−− t ′

I(t , c, jni) = I(t , c, jni)\{t ′}

fork

I(t,c,s) = {t'} I(t',c',s')={t}
s s'

join

s1I(t,c,s1) = { }

(t,c,s) || (t',c',s') (t',c',s') || (t,c,s1)

t t'

[I-SIBLING]
t ./ t ′ (c, `) = Entry(St) (c′, `′) = Entry(St ′) t 6� t ′ ∧ t ′ 6� t

{t} ⊆ I(t ′, c′, `′) {t ′} ⊆ I(t , c, `)

fork
I(t,c,s)={}s

join

s'I(t',c',s')={}
fork

join

t0 tt'

(t,c,s) || (t',c',s')

[I-SIBLING]
t ./ t ′ (c, `) = Entry(St) (c′, `′) = Entry(St ′) t 6� t ′ ∧ t ′ 6� t

{t} ⊆ I(t ′, c′, `′) {t ′} ⊆ I(t , c, `)

(t,c,s) || (t',c',s')

fork
I(t,c,s)={t'}s

join

s'I(t',c',s')={t}
fork

join

t0 tt'

13 / 1

CGO 2016, March 15th, Barcelona

Interleaving Analysis Rule

[I-DESCENDANT]
t

(c,fki)−−−→ t ′ (t , c, fki)→ (t , c, `) (c′, `′) = Entry(St ′)

{t ′} ⊆ I(t , c, `) {t} ⊆ I(t ′, c′, `′)

t t'

fork

I(t,c,s) = {t'} I(t',c',s')={t}
s s'

(t,c,s) || (t',c',s')

[I-JOIN]
t

(c,jni)←−−− t ′

I(t , c, jni) = I(t , c, jni)\{t ′}

fork

I(t,c,s) = {t'} I(t',c',s')={t}
s s'

join

s1I(t,c,s1) = { }

(t,c,s) || (t',c',s') (t',c',s') || (t,c,s1)

t t'

[I-SIBLING]
t ./ t ′ (c, `) = Entry(St) (c′, `′) = Entry(St ′) t 6� t ′ ∧ t ′ 6� t

{t} ⊆ I(t ′, c′, `′) {t ′} ⊆ I(t , c, `)

fork
I(t,c,s)={}s

join

s'I(t',c',s')={}
fork

join

t0 tt'

(t,c,s) || (t',c',s')

[I-SIBLING]
t ./ t ′ (c, `) = Entry(St) (c′, `′) = Entry(St ′) t 6� t ′ ∧ t ′ 6� t

{t} ⊆ I(t ′, c′, `′) {t ′} ⊆ I(t , c, `)

(t,c,s) || (t',c',s')

fork
I(t,c,s)={t'}s

join

s'I(t',c',s')={t}
fork

join

t0 tt'

13 / 1

CGO 2016, March 15th, Barcelona

Interleaving Analysis Rule

[I-DESCENDANT]
t

(c,fki)−−−→ t ′ (t , c, fki)→ (t , c, `) (c′, `′) = Entry(St ′)

{t ′} ⊆ I(t , c, `) {t} ⊆ I(t ′, c′, `′)

t t'

fork

I(t,c,s) = {t'} I(t',c',s')={t}
s s'

(t,c,s) || (t',c',s')

[I-JOIN]
t

(c,jni)←−−− t ′

I(t , c, jni) = I(t , c, jni)\{t ′}

fork

I(t,c,s) = {t'} I(t',c',s')={t}
s s'

join

s1I(t,c,s1) = { }

(t,c,s) || (t',c',s') (t',c',s') || (t,c,s1)

t t'

[I-SIBLING]
t ./ t ′ (c, `) = Entry(St) (c′, `′) = Entry(St ′) t 6� t ′ ∧ t ′ 6� t

{t} ⊆ I(t ′, c′, `′) {t ′} ⊆ I(t , c, `)

fork
I(t,c,s)={}s

join

s'I(t',c',s')={}
fork

join

t0 tt'

(t,c,s) || (t',c',s')

[I-SIBLING]
t ./ t ′ (c, `) = Entry(St) (c′, `′) = Entry(St ′) t 6� t ′ ∧ t ′ 6� t

{t} ⊆ I(t ′, c′, `′) {t ′} ⊆ I(t , c, `)

(t,c,s) || (t',c',s')

fork
I(t,c,s)={t'}s

join

s'I(t',c',s')={t}
fork

join

t0 tt'

13 / 1

CGO 2016, March 15th, Barcelona

Interleaving Analysis Rule

[I-DESCENDANT]
t

(c,fki)−−−→ t ′ (t , c, fki)→ (t , c, `) (c′, `′) = Entry(St ′)

{t ′} ⊆ I(t , c, `) {t} ⊆ I(t ′, c′, `′)

t t'

fork

I(t,c,s) = {t'} I(t',c',s')={t}
s s'

(t,c,s) || (t',c',s')

[I-JOIN]
t

(c,jni)←−−− t ′

I(t , c, jni) = I(t , c, jni)\{t ′}

fork

I(t,c,s) = {t'} I(t',c',s')={t}
s s'

join

s1I(t,c,s1) = { }

(t,c,s) || (t',c',s') (t',c',s') || (t,c,s1)

t t'

[I-SIBLING]
t ./ t ′ (c, `) = Entry(St) (c′, `′) = Entry(St ′) t 6� t ′ ∧ t ′ 6� t

{t} ⊆ I(t ′, c′, `′) {t ′} ⊆ I(t , c, `)

fork
I(t,c,s)={}s

join

s'I(t',c',s')={}
fork

join

t0 tt'

(t,c,s) || (t',c',s')

[I-SIBLING]
t ./ t ′ (c, `) = Entry(St) (c′, `′) = Entry(St ′) t 6� t ′ ∧ t ′ 6� t

{t} ⊆ I(t ′, c′, `′) {t ′} ⊆ I(t , c, `)

(t,c,s) || (t',c',s')

fork
I(t,c,s)={t'}s

join

s'I(t',c',s')={t}
fork

join

t0 tt'

13 / 1

CGO 2016, March 15th, Barcelona

Interleaving Analysis Rule

[I-DESCENDANT]
t

(c,fki)−−−→ t ′ (t , c, fki)→ (t , c, `) (c′, `′) = Entry(St ′)

{t ′} ⊆ I(t , c, `) {t} ⊆ I(t ′, c′, `′)

[I-SIBLING]
t ./ t ′ (c, `) = Entry(St) (c′, `′) = Entry(St ′) t 6� t ′ ∧ t ′ 6� t

{t} ⊆ I(t ′, c′, `′) {t ′} ⊆ I(t , c, `)

[I-JOIN]
t

(c,jni)←−−− t ′

I(t , c, jni) = I(t , c, jni)\{t ′}
[I-CALL]

(t , c, `)
calli−−→ (t , c′, `′) c′ = c.push(i)
I(t , c, `) ⊆ I(t , c′, `′)

[I-INTRA]
(t , c, `)→ (t , c, `′)
I(t , c, `) ⊆ I(t , c, `′) [I-RET]

(t , c, `)
reti−−→ (t , c′, `′) i = c.peek() c′ = c.pop()

I(t , c, `) ⊆ I(t , c′, `′)

14 / 1

CGO 2016, March 15th, Barcelona

Lock Analysis

Statements from different mutex regions are interference-free if
these regions are protected by a common lock.

s1

T1 T2

s3

s4s2

 fork(t2, foo)

 s1 : *p = & c

 s2 : *p = & d

Thread 1 Thread 2

 foo(){

 s4 : q = *p

}

 s3 : *p = & e

[a]
[a]

[a]

fork

[a]

main(){

}

[a]

15 / 1

CGO 2016, March 15th, Barcelona

Lock Analysis

Statements from different mutex regions are interference-free if
these regions are protected by a common lock.

s1

T1 T2

s3

sp!1 sp!2

s4Xs2

 fork(t2, foo)

 s1 : *p = & c

 s2 : *p = & d

Thread 1 Thread 2

 foo(){

 s4 : q = *p

}

 s3 : *p = & e

[a]
[a]

[a]

fork

[a]

main(){

}

lock(l)

unlock(l)

lock(l)

unlock(l)

16 / 1

CGO 2016, March 15th, Barcelona

Outline

• Background and Motivation
• Our approach: FSAM
• Evalution

16 / 1

CGO 2016, March 15th, Barcelona

Evaluation
• Implementation:

• On top of our previous open-source tool SVF
(http://unsw-corg.github.io/SVF/) (CC ’16)

• Around 4,000 LOC core source code
• Field-sensitivity: each field instance of a struct is treated as

a separate object, arrays are considered monolithic.
• On-the-fly call graph construction.

• Methodology
• FSAM v.s. NONSPARSE iterative flow-sensitive analysis

following RR algorithm1

• Benchmarks:
• Two largest C benchmarks from Phoenix-2.0
• Five largest C benchmarks from Parsec-3.0
• Three open-source applications

• Machine setup:
• Ubuntu Linux 3.11 Intel Xeon Quad Core, 3.7GHZ, 64GB

1Radu Rugina and Martin Rinard, Pointer Analysis for Multithreaded Programs
PLDI ’99

17 / 1

CGO 2016, March 15th, Barcelona

Evaluation
• Implementation:

• On top of our previous open-source tool SVF
(http://unsw-corg.github.io/SVF/) (CC ’16)

• Around 4,000 LOC core source code
• Field-sensitivity: each field instance of a struct is treated as

a separate object, arrays are considered monolithic.
• On-the-fly call graph construction.

• Methodology
• FSAM v.s. NONSPARSE iterative flow-sensitive analysis

following RR algorithm1

• Benchmarks:
• Two largest C benchmarks from Phoenix-2.0
• Five largest C benchmarks from Parsec-3.0
• Three open-source applications

• Machine setup:
• Ubuntu Linux 3.11 Intel Xeon Quad Core, 3.7GHZ, 64GB

1Radu Rugina and Martin Rinard, Pointer Analysis for Multithreaded Programs
PLDI ’99

17 / 1

CGO 2016, March 15th, Barcelona

Evaluation
• Implementation:

• On top of our previous open-source tool SVF
(http://unsw-corg.github.io/SVF/) (CC ’16)

• Around 4,000 LOC core source code
• Field-sensitivity: each field instance of a struct is treated as

a separate object, arrays are considered monolithic.
• On-the-fly call graph construction.

• Methodology
• FSAM v.s. NONSPARSE iterative flow-sensitive analysis

following RR algorithm1

• Benchmarks:
• Two largest C benchmarks from Phoenix-2.0
• Five largest C benchmarks from Parsec-3.0
• Three open-source applications

• Machine setup:
• Ubuntu Linux 3.11 Intel Xeon Quad Core, 3.7GHZ, 64GB

1Radu Rugina and Martin Rinard, Pointer Analysis for Multithreaded Programs
PLDI ’99

17 / 1

CGO 2016, March 15th, Barcelona

Benchmarks

Table: Program statistics.

Benchmark Description LOC
word count Word counter based on map-reduce 6330
kmeans Iterative clustering of 3-D points 6008
radiosity Graphics 12781
automount Manage autofs mount points 13170
ferret Content similarity search server 15735
bodytrack Body tracking of a person 19063
httpd server Http server 52616
mt daapd Multi-threaded DAAP Daemon 57102
raytrace Real-time raytracing 84373
x264 Media processing 113481
Total 380,659

RR only evaluated their analysis with benchmarks with up to 4500 lines of Cilk code.
18 / 1

CGO 2016, March 15th, Barcelona

Analysis Time and Memory Usage

Table: Analysis time and memory usage.

Program Time (Secs) Memory (MB)
FSAM NONSPARSE FSAM NONSPARSE

word count 3.04 17.40 13.79 53.76
kmeans 2.50 18.19 18.27 53.19
radiosity 6.77 29.29 38.65 95.00
automount 8.66 83.82 27.56 364.67
ferret 13.49 87.10 52.14 934.57
bodytrack 128.80 2809.89 313.66 12410.16
httpd server 191.22 2079.43 55.78 6578.46
mt daapd 90.67 2667.55 37.92 3403.26
raytrace 284.61 OOT 135.06 OOT
x264 531.55 OOT 129.58 OOT

FSAM is 12x faster and uses 28x less memory.
19 / 1

CGO 2016, March 15th, Barcelona

Impact of FSAM’s three thread interference
analysis

Figure: Impact of FSAM’s three thread interference analysis phases
on the performance of flow-sensitive points-to resolution.

20 / 1

CGO 2016, March 15th, Barcelona

Conclusion

• The first sparse flow-sensitive pointer analysis for
unstructured multithreaded programs (C with Pthread)

• A series of context-sensitive thread interference analyses
by reasoning about fork/join, memory accesses,
lock/unlock.

• Significantly faster than non-sparse algorithm and scales
to large size multithreaded Pthread programs with up to
100KLOC.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C Open source and publicly available online:

http://www.cse.unsw.edu.au/~corg/fsam/

21 / 1

http://www.cse.unsw.edu.au/~corg/fsam/

CGO 2016, March 15th, Barcelona

Thanks!

Q & A

21 / 1

	Motivation
	Framework and Analyses
	Experimental Result

