
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C

Sparse Flow-Sensitive Pointer Analysis
for Multithreaded Programs

Yulei Sui, Peng Di, and Jingling Xue
UNSW Australia

Abstract
For C programs, flow-sensitivity is important to enable
pointer analysis to achieve highly usable precision. Despite
significant recent advances in scaling flow-sensitive pointer
analysis sparsely for sequential C programs, relatively little
progress has been made for multithreaded C programs.

In this paper, we present FSAM, a new Flow-Sensitive
pointer Analysis that achieves its scalability for large
Multithreaded C programs by performing sparse analysis
on top of a series of thread interference analysis phases.
We evaluate FSAM with 10 multithreaded C programs
(with more than 100K lines of code for the largest) from
Phoenix-2.0, Parsec-3.0 and open-source applica-
tions. For two programs, raytrace and x264, the tradi-
tional data-flow-based flow-sensitive pointer analysis is un-
scalable (under two hours) but our analysis spends just under
5 minutes on raytrace and 9 minutes on x264. For the
rest, our analysis is 12x faster and uses 28x less memory.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program Analysis

General Terms Algorithms, Languages, Performance

Keywords Pointer Analysis, Sparse Analysis, Flow-Sensitivity

1. Introduction
C, together with its OO incarnation C++, is the de facto
standard for implementing system software (e.g., operating
systems and language runtimes), server and client applica-
tions. A substantial number of these applications are multi-
threaded in order to better utilize multicore computing re-
sources. However, multithreading poses a major challenge

for pointer analysis, since shared memory locations can be
accessed non-deterministically by concurrent threads.

Pointer analysis is a fundamental static analysis, on which
many other analyses/optimizations are built. The more pre-
cisely a pointer is resolved, the more effective the pointer
analysis will likely be. By improving its precision and scal-
ability for multithreaded C programs, we can directly im-
prove the effectiveness of many clients, including data race
detection [24], deadlock detection [30], compiler optimiza-
tion reuse [14], control-flow integrity enforcement [8], mem-
ory safety verification [20], and memory leak detection [28].

For such client applications operating on C programs,
pointer analysis needs to be flow-sensitive (by respecting
control flow) in order to achieve highly usable precision.
There have been significant recent advances in applying
sparse analysis to scale flow-sensitive pointer analysis for
sequential C programs [10, 11, 21, 29, 32, 33]. However,
applying them directly to their multithreaded C programs
using Pthreads will lead to unsound (imprecise) results if
thread interference on shared memory locations is ignored
(grossly over-approximated). In the case of pointer analy-
sis for OO languages like Java, context-sensitivity instead of
flow-sensitivity is generally regarded as essential in improv-
ing precision [19, 27, 31]. So far, relatively little progress
has been made in improving the scalability of flow-sensitive
pointer analysis for multithreaded C programs. Below we
describe some challenges and insights for tackling this prob-
lem and introduce a sparse approach for solving it efficiently.

1.1 Challenges and Insights
One challenge lies in dealing with an unbounded number of
thread interleavings. Two threads interfere with each other
when one writes into a memory location that may be ac-
cessed by the other. In Figure 1(a), c “ ˚p can load the
points-to values from x that are stored into by ˚p “ r in the
same (main) thread or ˚p “ q in a parallel thread t. As a
result, the points-to set of c is ptpcq “ ty, zu.

In addition, computing sound (i.e., over-approximate)
points-to sets flow-sensitively relies on a so-called may-
happen-in-parallel (MHP) analysis to discover parallel code
regions. Unlike structured languages such as Cilk [25] and
X10 [1], which provide high-level concurrency constructs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CGO’16, March 12–18, 2016, Barcelona, Spain
c© 2016 ACM. 978-1-4503-3778-6/16/03...$15.00

http://dx.doi.org/10.1145/2854038.2854043

160

p = &x; q = &y;
r = &z;
void main(){
fork(t,foo);
*p = r;
c = *p;

}

void foo(){
*p = q;

}

p = &x; q = &y;
r = &z;
void main(){
fork(t1,foo);
join(t1);
*p = r;
}
void foo(){
fork(t2,bar);
}
void bar(){
*p = q;
c = *p;

}

p = &x; q = &y;
r = &z;
void main(){
*p = r;
fork(t,foo);
join(t);
c = *p;
}

void foo(){
*p = q;

}

p = &x; q = &y;
r = &z; x = &a;
void main(){
fork(t,foo);
c = *p;
}

void foo(){
*p = q;
*x = r;
}

p = &x; q = &y;
r = &z; u = &v;
void main(){
*p = r;
fork(t,foo);
lock(l1); c = *p; unlock(l1);
}
void foo(){
lock(l2);
*p = u; *p = q;
unlock(l2);
}
//l1 and l2 point to same lock

pt(c) = {y, z} pt(c) = {y, z} pt(c) = {y} pt(c) = {y} pt(c) = {y, z}
(a) Interleaving (b) Soundness (c) Precision (d) Data-flow (e) Sparsity

Figure 1: Examples for illustrating some challenges faced by flow-sensitive pointer analysis for multithreaded C programs
(with irrelevant code elided). For brevity, fork() and join() represent pthread create() and pthread join() in the Pthreads API.

Sparse
flow-sensitive

resolution

Interleaving
analysis

Value-flow
analysis Lock analysis

thread-oblivious def-usefork/join lock/unlock

MHP
 pairs

aliased
pairs

flow-sensitive
points-to

Pre-analysis memory accesses

thread-aware
def-use

Figure 2: FSAM: a sparse flow-sensitive pointer analysis framework for multithreaded C programs.

with restricted parallelism patterns, unstructured and low-
level constructs in the Pthreads API allow programmers to
express richer parallelism patterns. However, such flexible
non-lexically-scoped parallelism significantly complicates
MHP analysis. For example, a thread may outlive its spawn-
ing thread or can be joined partially along some program
paths or indirectly in one of its child threads. In Figure 1(b),
thread t2 executes independently of its spawning thread t1
and will stay alive even after t1 has been joined by the main
thread. Thus, ˚p “ r executed in the main thread may inter-
leave with the two statements ˚p “ q and c “ ˚p in bar()
executed by t2. A sound points-to set for c is ptpcq “ ty, zu.

How to maintain precision can also be challenging. Syn-
chronization statements (e.g., fork/join and lock/unlock)
must be well tracked to reduce spurious interleavings among
non-parallel statements. In Figure 1(c), ˚p “ r, ˚p “ q, and
c “ ˚p are always executed serially in that order. By per-
forming a strong update at ˚p “ q with respect to thread
ordering, we can discover that c points to y stored in x by
˚p “ q (not z stored in x at ˚p “ r, since x has been
strongly updated with &y, killing &z). Thus, ptpcq “ tyu.

How do we scale flow-sensitive pointer analysis for large
multithreaded C programs? One option is to adopt a data-
flow analysis to propagate iteratively the points-to facts
generated at a statement s to every other statement s1 that
is either reachable along the control flow or may-happen-
in-parallel with s, without knowing whether the facts are
needed at s1 or not. This traditional approach computes and
maintains a separate points-to graph at each program point in

order to accommodate the side-effects of all parallel threads.
Blindly propagating the points-to information this way under
all thread interleavings is inefficient in both time and space.
In Figure 1(d), c “ ˚p in the main thread can interleave with
˚p “ q and ˚x “ r in thread t. However, propagating the
points-to information generated at ˚x “ r to c “ ˚p is not
necessary, since ˚p and ˚x are not aliases. So ptpcq “ tyu.

Finally, how do we improve scalability by propagating
points-to facts along only a set of pre-computed def-use
chains sparsely? It turns out that this pre-computation is
much more challenging in the multithreaded setting than the
sequential setting [10]. Imprecise handling of synchroniza-
tion statements (e.g., fork/join and lock/unlock) may lead
to spurious def-use chains, reducing both the scalability and
precision of the subsequent sparse analysis. In Figure 1(e),
ptpcq “ ty, zu, if l1 and l2 are must aliases pointing to
the same lock. However, if a pre-computed def-use edge is
added from ˚u “ v to c “ ˚p, then following this spurious
edge makes the analysis not only less efficient but also less
precise by concluding that ptpcq “ ty, z, vu is possible.

1.2 Our Solution
In this paper, we present FSAM, a new Flow-Sensitive
pointer Analysis for handling large Multithreaded C pro-
grams (using Pthreads). We address the afore-mentioned
challenges by performing sparse analysis along the def-
use chains precomputed by a pre-analysis and a series of
thread interference analysis phases, as illustrated in Fig-
ure 2. To bootstrap the sparse analysis, a pre-analysis (by
applying Andersen’s pointer analysis algorithm [2]) is first

161

performed flow- and context-insensitively to discover over-
approximately the points-to information in the program.

Based on the pre-analysis, some thread-oblivious def-
use edges are identified. Then thread interleavings are an-
alyzed to discover all the missing thread-sensitive def-use
edges. Our interleaving analysis reasons about fork and join
operations flow- and context-sensitively to discover may-
happen-in-parallel (MHP) statement pairs. Our value-flow
analysis adds the thread-aware def-use edges for MHP state-
ment pairs with common value flows to produce so-called
aliased pairs. Our lock analysis analyzes lock/unlock opera-
tions flow- and context-sensitively to identify those interfer-
ing aliased pairs based on the happen-before relations estab-
lished among their corresponding mutex regions.

Finally, a sparse flow-sensitive pointer analysis algorithm
is applied by propagating the points-to facts sparsely along
the pre-computed def-use chains, rather than along all pro-
gram points with respect to the program’s control flow.

This paper makes the following contributions:

• We present the first sparse flow-sensitive pointer analysis
for unstructured multithreaded C programs.

• We describe several techniques (including thread inter-
ference analyses) for pre-computing def-use information
so that it is sufficiently accurate in bootstrapping sparse
flow-sensitive analysis for multithreaded C programs.

• We show that FSAM (implemented in LLVM (3.5.0)) is
superior over the traditional data-flow analysis, denoted
NONSPARSE, in terms of scalability on 10 multithreaded
C programs from Phoenix-2.0, Parsec-3.0 and
open-source applications. For two programs, raytrace
and x264, NONSPARSE is unscalable (under two hours)
but FSAM spends just under 5 minutes on raytrace
and 9 minutes on x264. For the remaining programs,
FSAM is 12x faster and uses 28x less memory.

2. Background
We introduce the partial SSA form used for representing a C
program and sparse pointer analysis in the sequential setting.

2.1 Partial SSA Form
A program is represented by putting it into LLVM’s partial
SSA form, following [10, 17, 18, 32]. The set of all program
variables V are separated into two subsets: A containing all
possible targets, i.e., address-taken variables of a pointer
and T containing all top-level variables, where V “ T YA.

After the SSA conversion, a program is represented by
five types of statements: p“&a (ADDROF), p“ q (COPY),
p “ ˚q (LOAD), ˚p “ q (STORE), and p “ φpq, rq (PHI),
where p, q, r P T and a P A. Top-level variables are put
directly in SSA form, while address-taken variables are only
accessed indirectly via LOAD or STORE. For an ADDROF
statement p“&a, known as an allocation site, a is a stack

 p = &a;
 a = &b;

 q = &c;
 *p = *q;

 p = &a;
 t1 = &b;

*p = t1;

 q = &c;
 t2 = *q;
 *p = t2;

(a) C code (b) Partial SSA

Figure 3: A C code fragment and its partial SSA form.

or global variable with its address taken or a dynamically
created abstract heap object (at, e.g., a malloc() site).

Figure 3 shows a code fragment and its corresponding
partial SSA form, where p, q, t1, t2 P T and a, b, c P A.
Note that a is indirectly accessed at a store ˚p “ t1 by
introducing a top-level pointer t1 in the partial SSA form.
The complex statements like ˚p “ ˚q are decomposed into
the basic ones by introducing a top-level pointer t2.

2.2 Sparse Flow-Sensitive Pointer Analysis For
Sequential C Programs

The traditional data-flow-based flow-sensitive pointer anal-
ysis computes and maintains points-to information at every
program point with respect to the program’s control flow.
This is costly as it propagates points-to information blindly
from each node in the CFG of the program to its successors
without knowing if the information will be used there or not.

To address the scalability issue in analyzing large sequen-
tial C programs, sparse analysis [10] is proposed by stag-
ing the pointer analysis: the def-use chains in a program
are first approximated by applying a fast but imprecise pre-
analysis (e.g., Andersen’s analysis) and the precise flow-
sensitive analysis is conducted next by propagating points-to
facts only along the pre-computed def-use chains sparsely.

The core representation of sparse analysis is a def-use
graph, where a node represents a statement and an edge
between two nodes e.g., s1

v
ãÝÑ s2 represents a def-use

relation for a variable v P V , with its def at statement s1 and
its use at statement s2. This representation is sparse since the
intermediate program points between s1 and s2 are omitted.

In partial SSA form, the uses of any top-level pointer have
a unique definition (with φ functions inserted at confluence
points as is standard). A def-use s1

t
ãÝÑs2, where t P T , can

be found easily without requiring pointer analysis.
As address-taken variables are not (yet) in SSA form,

their indirect uses at loads may be defined indirectly at
multiple stores. Their def-use chains are built in several steps
following [10], as illustrated in Figure 4. We go through a
sequence of steps needed in building the def-use chains for
a P A. The def-use chains for b P A are built similarly.

First, indirect defs and uses (i.e., may-defs and may-
uses) are exposed at loads and stores, based on the points-to
information obtained during the pre-analysis (Figure 4(a)).
A load, e.g., s “ ˚r is annotated with a function µpaq, where

162

 s1: *p = q;
 a = !(a)
 b = !(b)

 "(b)
 s2: v = *w;

s3: *x = y;

 a = !(a)

 "(a)
s4: s = *r;

(a) annotated !/"

Pre-computed
Points-to

pt(p) = {a,b}
pt(w) = {b}
pt(x) = {a}
pt(r) = {a}

 s1:*p = q;
 a = !(a)
 b = !(b)

 "(a)
 s2:v = *w;

 s3:*x = y;

 b = !(b)

 "(b)
 s4:s = *r;

(c) Def-use graph

[b]

[a]

[a]

(b) !/"$after SSA$

 s1: *p = q;
 a1 = !(a0)
 b1 = !(b0)

 "(b1)
 s2: v = *w;

s3: *x = y;

 a2 = !(a1)

 "(a2)
s4: s = *r;

Figure 4: A sparse def-use graph.

a P A may be pointed to by r to represent a potential use of a
at the load. Similarly, a store, e.g., ˚x “ y is annotated with
a function a “ χpaq to represent a potential def and use of
a at the store. If a can be strongly updated, then a receives
whatever y points to and the old contents in a are killed.
Otherwise, amust also incorporate its old contents, resulting
in a weak update to a. Third, each address-taken variable,
e.g., a is converted into SSA form (Figure 4(b)), with each
µpaq treated as a use of a. and each a “ χpaq as both a def
and use of a. Finally, an indirect def-use chain of a is added
from a definition of a identified as an (version n) at a store to
its uses at a store or a load, resulting in two indirect def-use
edges of a i.e. s1

a
ãÝÑ s3 and s3

a
ãÝÑ s4 (Figure 4(c)). Any

φ function introduced for an address-taken variable a during
the SSA conversion will be ignored as a is not versioned.

Every callsite is also annotated with µ and χ functions
to expose its indirect uses and defs. As is standard, passing
arguments into and returning results from functions are mod-
eled by copies. So the def-use chains across the procedural
boundaries are added similarly. For details, we refer to [10].

Once the def-use chains are in place for the program,
flow-sensitive pointer analysis can be performed sparsely,
i.e., by propagating points-to information only along these
pre-computed def-use edges. For example, the points-to sets
of a computed at s1 are propagated to s3 with s2 bypassed,
resulting in significant savings both time and memory.

3. The FSAM Approach
We first describe a static thread model used for handling
fork and join operations (Section 3.1). We then introduce
our FSAM framework (Figure 2), focusing on how to pre-
compute def-use chains (Sections 3.2 and 3.3) and dis-
cussing thereafter on how to perform the subsequent sparse
analysis for multithreaded C programs (Section 3.4).

3.1 Static Thread Model
Abstract Threads A program starts its execution from its
main function in the main (root) thread. An abstract thread
t refers to a call of pthread create() at a context-
sensitive fork site during the analysis. Thus, a thread t al-
ways refers to a context-sensitive fork site, i.e., a unique

[T-FORK]
t

pc,fkiq
ùùùùñ t1 t1

pc1,fki1 q
ùùùùùñ t2

t
pc,fkiq
ùùùùñ t2

[T-JOIN]
t

pc,jniq
ðùùùù t1 t1

pc1,jni1 q
ðùùùùù

full
t2

t
pc,jniq
ðùùùù t2

[T-SIBLING]
t2

pc,fkiq
ùùùùñ t t2

pc1,fki1 q
ùùùùùñ t1 (i ‰ i1_c ‰ c1)
t ’ t1

Figure 5: Static modeling of fork and join operations.

runtime thread unless t is multi-forked, in which case, t may
represent more than one runtime thread.

Definition 1 (Multi-Forked Threads). A thread t P M is a
multi-forked thread if its fork site, say, fki resides in a loop,
a recursion cycle, or its spawner thread t1 PM.

Intra-Thread CFG For an abstract thread t, its intra-thread
control flow graph, ICFGt, is constructed as in [15], where
a node s represents a program statement and an edge from
s1 to s2 signifies a possible transfer of control from s1 to
s2. For convenience, a call site is split into a call node and
a return node. Three kinds of edges are distinguished: (1) an
intra-procedural control flow edge s Ñ s1 from node s to
its successor s1, (2) an interprocedural call edge s calli

ÝÝÝÑ s1

from a call node s to the entry node s1 of a callee at callsite
i, and (3) an interprocedural return edge s reti

ÝÝÑ s1 from an
exit node s of a callee to the return node s1 at callsite i.

There are no outgoing edges for a fork or join site. Func-
tion pointers are resolved by pre-analysis.

Modeling Thread Forks and Joins Figure 5 gives three
rules for modeling fork and join operations statically. We

write t
pc,fkiq
ùùùùñ t1 to represent the spawning relation that a

spawner thread t creates a spawnee thread t1 at a context-
sensitive fork site pc, fkiq, where c is a context stack repre-
sented by a sequence of callsites, [cs0, ¨ ¨ ¨ , csn], from the
entry of the main function to the fork site fki. Note that
the callsites inside each strongly-connected cycle in the call
graph of the program are analyzed context-insensitively.

For a thread t forked at pc, fkiq, we write St to stand
for its start procedure, where the execution of t begins.
EntrypStq “ pc1, sq maps St to its first statement pc1, sq,
where c1 “ c.pushpiq, context-sensitively.

Consider the three rules in Figure 5. The spawning rela-

tion t
pc,fkiq
ùùùùñ t1 is transitive, representing the fact that t can

create t1 directly or indirectly at a fork site fki ([T-FORK]).
We will handle only the join operations identified by

[T-JOIN] and ignore the rest in the program. The joining

relation t
pc,jniq
ðùùùù t1 indicates that a spawnee t1 is joined by

its spawner t at a join site pc, jniq As our pre-analysis is

163

void main() {
. . .
s1: *p = ...;
fk1: fork(t1, foo);
s2: *p = ...; void foo() {
jn1: join(t1); s4 : ˚q “ ...
s3: ... = *p; s5 : ¨ ¨ ¨ “ ˚q
} }

o
o

o

o

s1
s4

t0 t1

s3
s2

s5

o

o
o

o

o

s1
s4

t0 t1

s3
s2

s5
o

o

o
o

o

o

s1
s4

t0 t1

s3
s2

s5

(a) Program P (b) Def-use for Pseq (c) Fork-related def-use (d) Join-related def-use

Figure 6: Thread-oblivious def-use edges (where p and q are found to point to o during the pre-analysis).

flow- and context-insensitive, we achieve soundness by re-
quiring t1 joined at a join site pthread join() in the pro-
gram to be excluded from M, so that t1 represents a unique
runtime thread (under all contexts). Note that the joining re-
lation is not transitive in the same sense as the spawning rela-
tion. In Pthreads programs, a thread can be joined fully along
all program paths or partially along some but not all paths.

Given t
pc,jniq
ðùùùù t1 and t1

pc1,jni1 q
ðùùùùù t2, t

pc,jniq
ðùùùù t2 holds when

t1
pc1,jni1 q
ðùùùùù t2 is a full join, denoted t1

pc1,jni1 q
ðùùùùù

full
t2.

If neither t
pc,fkiq
ùùùùñ t1 nor t1

pc1,fki1 q
ùùùùùñ t holds, then t and t1

are siblings, denoted t ’ t1 ([T-SIBLING]). In this case,
t and t1, where t ‰ t1, share a common ancestor thread
t2. Furthermore, t and t1 do not happen-in-parallel if one
happens before the other (as defined below).

Definition 2 (Happens-Before (HB) Relation for Sibling
Threads). Given two sibling threads t and t1, t happens
before t1, denoted t ą t1, if the fork site of t1 is backward
reachable to a join site of t along every program path.

Presently, FSAM does not model other synchroniza-
tion constructs such as barriers and signal/wait, resulting
in sound, i.e., over-approximate results.

3.2 Computing Thread-Oblivious Def-Use Chains
Given a multithreaded C program P , we transform P into
a sequential version Pseq, representing one possible thread
interleaving of P . We then derive the def-use chains from
Pseq as the thread-oblivious def-use chains for P , based on
the points-to information obtained during the pre-analysis.

There are three steps, illustrated in Figure 6.
In Step 1, we transform P into Pseq by replacing every

fork statement fk in P by calls to the start procedures of all
the threads spawned at fk. Let Sfk be the set of these start
procedures. We keep the join operations that we can han-
dle by [T-JOIN] and ignore the rest. We then follow [10]
to compute its def-use chains for Pseq, as discussed in Sec-
tion 2.2. Given P in Figure 6(a), where Sfk1 “ tfoou, we
obtain its Pseq by replacing fork(t,foo) with a call to
foo(). The def-use chains for Pseq are given in Figure 6(b).

In Step 2, we add the fork-related missing def-use edges
at a fork site fk by assuming Sfk “ H, since every start

procedure, say, fun, in Sfk may be executed nondeterminis-
tically later. This means that any value flow added in Step 1
that go through fun can also bypass it altogether. For ev-
ery such a def-use chain that starts at a statement s before
the callsite for fun and ends at a statement s1 after, we add a
def-use edge from s to s1. (Technically, a weak update is per-
formed for every a “ χpaq function associated with the call-
site for fun, so that the old contents of a prior to the call are
preserved.) In our example Figure 6(b) becomes Figure 6(c)
with the fork-related def-use edge s1 o

ãÝÑ s2 being added.
In Step 3, we deal with every direct join operation han-

dled by our static thread model ([T-JOIN]). Let join(t1q be
a candidate join site executed in the spawner thread t, which
implies, as discussed in Section 3.1, that t1 is a unique run-
time thread to be joined. Let fun1 be the start procedure of
t1. In one possible thread interleaving, this join statement
plays a similar role as an exception-catching statement for
an exception thrown at the end of fun1. Given this implicit
control flow, we need to make the modification side effects
of fun1 visible at the join site. Let a P A be an address-
taken variable defined at the exit of fun1. For the first use
of a reachable from the join site along every program path
in ICFGt, we add a def-use edge from that definition to the
use. In our example, Figure 6(c) becomes Figure 6(d) with
the join-related def-use edge s4 o

ãÝÑ s3 added.

3.3 Computing Thread-Aware Def-Use Chains
For a program P , we must also discover the def-use chains
formed by all the other thread interleavings except Pseq.
Such def-use chains are thread-aware and computed with the
three thread interference analyses incorporated in FSAM.

3.3.1 Interleaving Analysis
As shown in Figure 2, FSAM invokes this as the first of the
three interference analyses to compute thread-aware def-use
chains. The objective here is to reason about fork and join
operations to identify all MHP statements in the program.

Our interleaving analysis operates flow- and context-
sensitively on the ICFGs of all the threads (but uses points-
to information from the pre-analysis). For a statement s in
thread t’s ICFGt, our analysis approximates which threads
may run in parallel with t when s is executed, denoted as

164

[I-DESCENDANT]
t

pc,fkiq
ùùùùñ t1 pt, c, fkiq Ñ pt, c, sq pc1, s1q “ EntrypSt1q

tt1u Ď Ipt, c, sq ttu Ď Ipt1, c1, s1q

[I-SIBLING]
t ’ t1 pc, sq “ EntrypStq pc1, s1q “ EntrypSt1q t č t1 ^ t1 č t

ttu Ď Ipt1, c1, s1q tt1u Ď Ipt, c, sq

[I-JOIN]
t

pc,jniq
ðùùùù t1

Ipt, c, jniq “ Ipt, c, jniqztt1u
[I-CALL]

pt, c, sq
calli
ÝÝÝÑ pt, c1, s1q c1 “ c.pushpiq

Ipt, c, sq Ď Ipt, c1, s1q

[I-INTRA]
pt, c, sq Ñ pt, c, s1q

Ipt, c, sq Ď Ipt, c, s1q
[I-RET]

pt, c, sq
reti
ÝÝÑ pt, c1, s1q i “ c.peekpq c1 “ c.poppq

Ipt, c, sq Ď Ipt, c1, s1q

Figure 7: Interleaving analysis (whereÑ denotes a control flow edge in a thread’s ICFG introduced Section 3.1).

main() {
s1;

fk1: fork(t1, foo1);
s2;

jn1: join(t1);

fk2: fork(t2, foo2);
s3;

jn2: join(t2);

}

foo1(){
fk3 :fork(t3, bar);
jn3 :join(t3);
}

foo2(){
cs4: bar();

s4;
}

bar(){
s5;

}

Fork:

t0
prs,fk1q
ùùùùñ t1

t1
pr1s,fk3q
ùùùùùñ t3

t0
prs,fk1q
ùùùùñ t3

t0
prs,fk2q
ùùùùñ t2

Join:

t0
prs,jn1q
ðùùùù t1

t1
pr1s,jn3q
ðùùùùù t3

t0
prs,jn1q
ðùùùù t3

t0
prs,jn2q
ðùùùù t2

Sibling:
t1 ’ t2
t3 ’ t2

HB:
t1 ą t2
t3 ą t2

Ipt0, rs, s1q = H

Ipt0, rs, s2q = tt1, t3u

Ipt0, rs, s3q = tt2u

Ipt2, r2s, s4q = tt0u

Ipt3, r1, 3s, s5q = tt0, t1u

Ipt2, r2, 4s, s5q = tt0u

pt0, rs, s2q ‖ pt3, r1, 3s, s5q

pt0, rs, s3q ‖ pt2, r2, 4s, s5q

pt0, rs, s3q ‖ pt2, r2s, s4q

(a) Program (b) Thread relations (c) Thread interleavings (d) MHP pairs

Figure 8: An illustrating example for interleaving analysis (with t0 denoting the main thread).

Ipt, c, sq, where c is a calling context to capture one in-
stance of s when its enclosing method is invoked under c.
For example, if Ipt1, c, sq “ tt2, t3u, then threads t2 and t3
may be alive when s1 is executed under context c in t1.

Statement s1 in thread t1 may happen in parallel with
statement s2 in thread t2, denoted as pt1, c1, s1q ‖ pt2, c2, s2q,
if the following holds (with M from Definition 1):

#

t2 P Ipt1, c1, s1q ^ t1 P Ipt2, c2, s2q if t1 ‰ t2

t1 PM otherwise

Given
pc,fkiq
ùùùùñ (spawning relation),

pc,jniq
ðùùùù (joining re-

lation), ’ (thread sibling) and ą (HB from Definition 2),
our interleaving analysis is formulated as a forward data-
flow problem pV,[, F q (Figure 7). Here, V represents the
set of all thread interleaving facts, [is the meet operator
(Y), and F : V Ñ V represents the set of transfer functions
associated with each node in an ICFG.

[I-DESCENDANT] handles thread creation t
pc,fkiq
ùùùùñ t1 at

a fork site pc, fkiq. The statement pc, sq that appears imme-
diately after pc, fkiq in ICFGt may-happen-in-parallel with
the entry statement pc1, s1q of the start procedure of thread t1.

Given two sibling threads t and t1, the entry statements
pc, sq and pc1, s1q of their start procedures may interleave
with each other if neither t ą t1 nor t1 ą t ([I-SIBLING]).

[I-JOIN] represents the fact that a descendent thread
will no longer be alive after it has been joined at a join site.

For a thread t, [I-CALL] and [I-RET] ([I-INTRA])
propagate data-flow facts interprocedurally by matching
calls and returns context-sensitively (intraprocedurally).

Example 1. We illustrate our interleaving analysis with a
program in Figure 8. As shown in Figure 8(a), the main
thread t0 creates two threads t1 and t2 at fork sites fk1 and
fk2, respectively. In its start procedure foo1, t1 spawns an-
other thread t3 and fully joins it later at jn3. Figure 8(b)
shows all the thread relations. Note that t2 continues to ex-
ecute after its two sibling threads t1 and t3 have terminated
due to jn1, which joins t1 directly and t3 indirectly.

The results of applying the rules in Figure 7 are listed in
Figure 8(c). Due to context-sensitivity, our analysis has iden-
tified precisely the three MHP relations given in Figure 8(d).
As bar() is called under two contexts, s5 has two differ-
ent instances pt3, r1, 3s, s5q and pt2, r2, 4s, s5q. The former

165

main() {
. . .
cs1: bar();
fk2: fork(t1, foo1);
fk3: fork(t2, foo2);
}
bar() {
s4 : ¨ ¨ ¨ “ ˚q

} // p and q point to the same object o
// l1 and l2 point to the same lock

foo1() {
s1: *p = ...;

lock(l1);
s2: *p = ...;
s3: *p = ...;

unlock(l1);
}

foo2() {
lock(l2);

cs4: bar();
unlock(l2);

}

Pre-computed aliases:
ASp˚p, ˚qq “ tou
Lock spans:
pt1, r2s, s2q P spl1
pt1, r2s, s3q P spl1
pt2, r3, 4s, s4q P spl2
MHP relations:
pt1, r2s, s1q ‖ pt2, r3, 4s, s4q
pt1, r2s, s2q ‖ pt2, r3, 4s, s4q
pt1, r2s, s3q ‖ pt2, r3, 4s, s4q

Inter-thread value-flows:

o

o

o

o
s1

t1 t2

s3

sp!1 sp!2

s4Xs2

Figure 9: A lock analysis example (with irrelevant code elided), avoiding s2 o
ãÝÑ s4 that would be added by [THREAD-VF].

one may-happen-in-parallel with pt0, rs, s2q and the later
one with pt0, rs, s3q. As our analysis is context-sensitive,
pt0, rs, s3q ‖ pt2, r2s, s4q but pt0, rs, s2q ∦ pt2, r2s, s4q.

3.3.2 Value-Flow Analysis
Given a pair of MHP statements, we make use of the points-
to information discovered during the pre-analysis to add
the potential (thread-aware) def-use edges in between. In
partial SSA form, the top-level pointers in T are kept in
registers and thus thread-local. However, the address-taken
variables in A can be accessed by concurrent threads via
loads and stores. It is only necessary to consider inter-
thread value-flows for MHP store-load and store-store pairs
rpt, c, sq, pt1, c1, s1q, where s is a store ˚p “ . . . and s1 is a
load ¨ ¨ ¨ “ ˚q or a store ˚q “ ¨ ¨ ¨ . Hence, [THREAD-VF]
comes into play, where ASp˚p, ˚qq is the set of objects in V
pointed to by both p and q (due to pre-analysis).

[THREAD-VF]

s : ˚p “ s1 : “ ˚q or ˚ q “
pt, c, sq ‖ pt1, c1, s1q o P ASp˚p, ˚qq

s
o

ãÝÑ s1

Example 2. For the program in Figure 6(a), we apply
[THREAD-VF] to add all the missing thread-aware def-
use chains on top of Figure 6(d). According to pre-analysis,
ASp˚p, ˚qq “ tou. As pt0, rs, s2q ‖ pt1, r1s, s4q, s2

o
ãÝÑ s4

is added. As pt0, rs, s2q ‖ pt1, r1s, s5q, s2
o

ãÝÑ s5 is added.
While pt1, r1s, s4q ‖ pt0, rs, s2q, s4

o
ãÝÑ s2 has been added

earlier as a thread-oblivious def-use edge (Section 3.2).

3.3.3 Lock Analysis
Statements from different mutex regions are interference-
free if these regions are protected by a common lock. By cap-
turing lock correlations, we can avoid some spurious def-use
edges introduced by [THREAD-VF] in the two lock-release
spans defined below. We do this by performing a flow- and
context-sensitive analysis for lock/unlock operations (based
on the points-to information from pre-analysis)

Definition 3 (Lock-Release Spans). A lock-release span spl
at a context-sensitive lock site pt, c, lockplqq consists of the
statements starting from pc, lockplqq to the corresponding re-

lease site pc1, unlockpl1qq in ICFGt obtained with a forward
reachability analysis with calls and returns being matched
context-sensitively, where l and l1 points to the same single-
ton (i.e., runtime) lock object, denoted as l ” l1.

Just in the case of MHP analysis for fork/join operations,
context-sensitivity ensures that lock analysis can distinguish
different calling contexts under which a statement appears
inside a lock-release span. In Figure 9, bar() is called
twice, but only the instance of statement pt2, r3, 4s, s4q
called from cs4 is inside the lock-release span spl2.

Definition 4 (Span Head). For an object o P A, HDpspl, oq
represents a set of context-sensitive loads or stores that
may access o at the head of the span spl: HDpspl, oq “
tpt, c, sq P spl | E pt

1, c1, s1q P spl : s
1 o

ãÝÑ su.

Definition 5 (Span Tail). For an object o P A, TLpspl, oq
represents a set of context-sensitive stores that may access
o at the tail of the span spl: TLpspl, oq “ tpt, c, sq P spl |
s is a store, E pt1, c1, s1q P spl : ps

1 is a store^ s o
ãÝÑ s1qu.

Definition 6 (Non-Interference Lock Pairs). Let pt, c, sq ‖
pt1, c1, s1q be a MHP statement pair, where s is a store, such
that both statements are protected by at least one common
lock, i.e., D l, l1 : pt, c, sq P spl ^ pt

1, c1, s1q P spl1 ùñ

l ” l1. We say that the pair is a non-interference lock pair if
pt, c, sq R TLpspl, oq _ pt

1, c1, s1q R HDpspl1 , oq holds.

By refining [THREAD-VF] with Definition 6 being taken
into account, some spurious value-flows are filtered out.

Example 3. In Figure 9, two lock-release spans spl1 and
spl2 are protected by a common lock, since ˚l1 and ˚l2
are found to be must aliases. By applying [THREAD-VF]

alone, all the three def-use edges in red will be added. By
Definition 6, however, s2 inside spl1 cannot interleave with
s4 inside spl2. So s2

o
ãÝÑ s4 is spurious and can be ignored.

3.4 Sparse Analysis
Once all the def-use chains have been built, the sparse flow-
sensitive pointer analysis algorithm developed for sequential
C programs [10], given in Figure 10, can be reused in the

166

[P-ADDR]
s : p “ &o

tou Ď ptps, pq
[P-COPY]

s : p “ q s1 q
ãÝÑ s

ptps1, qq Ď ptps, pq

[P-PHI]
s : p “ φpq, rq s1 q

ãÝÑ s s2 r
ãÝÑ s

ptps1, qq Ď ptps, pq ptps2, rq Ď ptps, pq

[P-LOAD]
s : p “ ˚q s2 q

ãÝÑ s o P ptps2, qq s1 o
ãÝÑ s

ptps1, oq Ď ptps, pq

[P-STORE]
s : ˚p “ q s2 p

ãÝÑ s o P ptps2, pq s1 q
ãÝÑ s

ptps1, qq Ď ptps, oq

[P-SU/WU]
s : ˚p “ s1 o

ãÝÑ s o P Azkillps, pq
ptps1, oq Ď ptps, oq

killps, pq “

$

’

&

’

%

to1u if ptps, pq“to1u ^ po1 P singletonsq
A else if ptps, pq“∅
∅ otherwise

Figure 10: Sparse flow-sensitive pointer analysis.

multithreaded setting. For a variable v, ptps, vq denotes its
points-to set computed immediately after statement s.

The first five rules deal with the five types of statements
introduced in Section 2.1, by following the pre-computed
def-use chains ãÝÑ. The last enables a strong or weak update
at a store, whichever is appropriate, where singletons [17]
is the set of objects in A representing unique locations by
excluding heap, array, and local variables in recursion.

FSAM is sound since (1) its pre-analysis is sound, (2)
the def-use chains constructed for the program (as described
in Sections 3.2 and 3.3) are over-approximate, and (3) the
sparse analysis given in Figure 10 is as precise as the tradi-
tional iterative data-flow analysis [10].

4. Evaluation
The objective is to show that our sparse flow-sensitive
pointer analysis, FSAM, is significantly faster than while
consuming less memory than the traditional data-flow-based
flow-sensitive pointer analysis, denoted NONSPARSE, in an-
alyzing large multithreaded C programs using Pthreads.

4.1 Experimental Setup
We have selected a set of 10 multithreaded C programs, in-
cluding the two largest (word count and kmeans) from
Phoenix-2.0, the five largest (radiosity, ferret,
bodytrack, raytrace and x264) from Parsec-3.0,
and three open-source applications (automount, mt daapd
and httpd-server), as shown in Table 1. All our ex-
periments were conducted on a platform consisting of a

Table 1: Program statistics.

Benchmark Description LOC
word count Word counter based on map-reduce 6330
kmeans Iterative clustering of 3-D points 6008
radiosity Graphics 12781
automount Manage autofs mount points 13170
ferret Content similarity search server 15735
bodytrack Body tracking of a person 19063
httpd server Http server 52616
mt daapd Multi-threaded DAAP Daemon 57102
raytrace Real-time raytracing 84373
x264 Media processing 113481
Total 380659

2.70GHz Intel Xeon Quad Core CPU with 64 GB memory,
running Ubuntu Linux (kernel version 3.11.0).

The source code of each program is compiled into bit
code files using clang and then merged together using LLVM
Gold Plugin at link time stage (LTO) to produce a whole-
program bc file. In addition, the compiler option mem2reg is
turned on to promote memory into registers.

// word_count-pthread.c
140 for(i=0; i<num_procs; i++){
166 pthread_create(&tid[i], &attr,

wordcount_map, (void*)out) != 0);
167 }
170 for (i = 0; i < num_procs; i++){
173 pthread_join(tid[i],

(void **)(void*)&ret_val) != 0);
175 }

...

Figure 11: A multi-forked example in word count.

4.2 Implementation
We have implemented FSAM in LLVM (version 3.5.0). An-
dersen’s analysis (using the constraint resolution techniques
from [23]) is used to perform its pre-analysis indicated in
Figure 2. In order to distinguish the concrete runtime threads
represented by an abstract multi-forked thread (Definition 1)
inside a loop, we use LLVM’s SCEV alias analysis to cor-
relate a fork-join pair. Figure 11 shows a code snippet from
word count, where a fixed number of threads are forked
and joined in two “symmetric” loops. FSAM can recog-
nize that any statement in a slave thread (with its start rou-
tine wordcount map) does not happen in parallel with the
statements after its join executed in the main thread.

FSAM is field-sensitive. Each field of a struct is treated
as a separate object, but arrays are considered monolithic.
Positive weight cycles (PWCs) that arise from processing
fields are detected and collapsed [22]. The call graph of a
program is constructed on-the-fly. Distinct allocation sites
are modeled by distinct abstract objects [10, 32].

167

4.3 Methodology
We are not aware of any flow-sensitive pointer analysis for
multithreaded C programs with Pthreads in the literature
or any publicly available implementation. RR [25] is clos-
est; it performs an iterative flow-sensitive data-flow-based
pointer analysis on structured parallel code regions in Clik
programs. However, C programs with Pthreads are unstruc-
tured, requiring MHP analysis to discover their parallel code
regions. PCG [14] is a recent MHP analysis for Pthreads that
distinguishes whether two procedures may execute concur-
rently. We have implemented RR also in LLVM (3.5.0) for
multithreaded C programs with their parallel regions discov-
ered by PCG, denoted NONSPARSE, as the base line.

To understand FSAM better, we also analyze the im-
pact of each of its phases on the performance of sparse
flow-sensitive points-to resolution. To do this, we measure
the slowdown of FSAM with each phase turned off indi-
vidually: (1) No-Interleaving: with our interleaving analysis
turned off but the results from PCG used instead, (2) No-
Value-Flow: with our value-flow analysis turned off (i.e.,
o P ASp˚p, ˚qq in [THREAD-VF] disregarded), and (3) No-
Lock: with our lock analysis turned off.

Note that some spurious def-use edges may be avoided by
more than one phase. Despite this, these three configurations
allow us to measure their relative performance impact.

4.4 Results and Analysis
Table 2 gives the analysis times and memory usage of
FSAM against NONSPARSE. FSAM spends less than 22
minutes altogether in analyzing all the 10 programs (total-
ing 380KLOC). For the two largest programs, raytrace
and x264, FSAM spends just under 5 and 9 minutes, re-
spectively, while NONSPARSE fails to finish analyzing each
under two hours. For the remaining 8 programs analyzable
by both, FSAM is 12x faster and uses 28x less memory than
NONSPARSE, on average. For the two programs with over
50KLOC, httpd server and mt daapd, FSAM is 11x
faster and uses 117x less memory for httpd server and
29x faster and uses 89x less memory for mt daapd.

For small programs, such as word count and kmeans,
FSAM yields little performance benefits over NONSPARSE
due to relatively few statements and simple thread synchro-
nizations used. For larger ones, which contain more pointers,
loads/stores and complex thread synchronization primitives,
FSAM has a more distinct advantage, with the best speedup
39x observed at bodytrack and the best memory usage re-
duction at httpd server. FSAM has achieved these bet-
ter results by propagating and maintaining significantly less
points-to information than NONSPARSE.

Figure 12 shows the relative impact of each of FSAM’s
three thread interference analysis phases on its analysis ef-
ficiency for the three configurations defined in Section 4.3.
The performance impact of each phase varies considerably
across the programs evaluated. On average, value-flow anal-

Table 2: Analysis time and memory usage.

Program
Time (Secs) Memory (MB)

FSAM NONSPARSE FSAM NONSPARSE

word count 3.04 17.40 13.79 53.76
kmeans 2.50 18.19 18.27 53.19
radiosity 6.77 29.29 38.65 95.00
automount 8.66 83.82 27.56 364.67
ferret 13.49 87.10 52.14 934.57
bodytrack 128.80 2809.89 313.66 12410.16
httpd server 191.22 2079.43 55.78 6578.46
mt daapd 90.67 2667.55 37.92 3403.26
raytrace 284.61 OOT 135.06 OOT
x264 531.55 OOT 129.58 OOT

ysis is more beneficial than the other two in reducing spuri-
ous def-use edges passed to the final sparse analysis.

Interleaving analysis is very useful for kmeans,
httpd-server and mt daapd in avoiding spurious
MHP pairs. These programs adopt the master-slave pat-
tern so that the slave threads perform their tasks in their
start procedures while the master thread handles some post-
processing task after having joined all the slave threads.
Precise handling of join operations is critical in avoiding
spurious MHP relations between the statements in the slave
threads and those after their join sites in the master thread.

Value-flow analysis is effective in reducing redundant
def-use edges among concurrent threads in most of the pro-
grams evaluated. For automount, ferret and mt daapd,
value-flow analysis has avoided adding over 80% (spurious)
def-use edges. In these programs, the concurrent threads ma-
nipulate not only global variables but also their local vari-
ables frequently. Thus, value-flow-analysis can prevent the
subsequent sparse analysis from propagating blindly a lot of
points-to information for non-shared memory locations.

Lock analysis is beneficial for programs such as
automount and radiosity that have extensive usage
of locks (with hundreds of lock-release spans) to protect
their critical code sections. In these program, some lock-
release spans can cover many statements accessing glob-
ally shared objects. Figure 13 gives a pair of lock-release
spans with a common lock accessing the shared global’s
task queue in two threads. The spurious def-use chains
from the write at line 457 in dequeue task to all the
statements accessing the shared task queue object in
enqueue task are avoided by our analysis.

5. Related Work
We discuss the related work on sparse flow-sensitive pointer
analysis and pointer analysis for multithreaded programs.

Sparse Flow-Sensitive Pointer Analysis Sparse analysis,
a recent improvement over the classic iterative data-flow
approach, can achieve flow-sensitivity more efficiently by

168

word count kmeans radiosity automount ferret bodytrack httpd-server mt daapd raytrace x264
0 x

2 x

4 x

6 x

8 x
S

lo
w

do
w

n
ov

er
F

S
A

M
No-Interleaving No-Value-Flow No-Lock 19.7x 13.9x 18.8x

Figure 12: Impact of FSAM’s three thread interference analysis phases on its analysis efficiency.

// taskman.C
377 void enqueue_task(long qid, Task *task,

long mode) {
382 tq = &global->task_queue[qid] ;
385 LOCK(tq->q_lock);
387 if(tq->tail == 0) // read
390 tq->tail = task ; // write

......
412 UNLOCK(tq->q_lock);
413 }
418 Task *dequeue_task(long qid, long max_visit,

long process_id){
443 tq = &global->task_queue[qid] ;
449 LOCK(tq->q_lock);

.....
457 tq->tail = NULL ; // write
470 tq->tail = prev ; // write

.....
475 UNLOCK(tq->q_lock);
494 }

Figure 13: Effectiveness of lock analysis for radiosity.

propagating points-to facts sparsely across pre-computed
def-use chains [10, 11, 21]. Initially, sparsity was experi-
mented with in [12, 13] on a Sparse Evaluation Graph [4],
a refined CFG with irrelevant nodes removed. On various
SSA form representations (e.g., factored SSA [5], HSSA [6]
and partial SSA [16]), further progress was made later. The
def-use chains for top-level pointers, once put in SSA form,
can be explicitly and precisely identified, giving rise to a
semi-sparse flow-sensitive analysis [11]. Recently, the idea
of staged analysis [9, 10] that uses pre-computed points-to
information to bootstrap a later more precise analysis has
been leveraged to make pointer analysis full-sparse for both
top-level and address-taken variables [10, 21, 29, 33].

Pointer Analysis for Multithreaded Programs This has
been an area that is not well studied and understood due
to the challenges discussed in Section 1.1. Earlier, Rugina
and Rinard [25] introduced a pointer analysis for Clik pro-
grams with structured parallelism. They solved a standard
data-flow problem to propagate points-to information iter-
atively along the control flow and evaluated their analysis
with benchmarks with up to 4500 lines of code.

However, unstructured multithreaded C or Java programs
are more challenging to analyze due to the use of non-

lexically-scoped synchronization statements (e.g., fork/join
and lock/unlock). For Java programs, a compositional ap-
proach [26] analyzes pointer and escape information of vari-
ables in a method that may be escaped and accessed by
other threads. The approach performs a flow-sensitive lock-
free analysis to analyze each method modularly but itera-
tively without considering strong updates. The proposed ap-
proach was evaluated on six small benchmarks (with up 18K
lines of bytecode). To maintain scalability for large Java
programs, modern pointer analysis tools for Java embrace
context-sensitivity instead of flow-sensitivity [27, 31].

However, flow-sensitivity is important to achieve preci-
sion required for C programs. To the best of our knowledge,
this paper presents the first sparse flow-sensitive pointer
analysis for C programs using Pthreads. The prior analyses
on handling thread synchronizations are conservative, by ig-
noring locks [26] or joins [14] or dealing with only partial
and/or nested joins [3]. In contrast, FSAM models such syn-
chronization operations more accurately, by building on our
recent work on MHP analysis [7], to produce the first mul-
tithreaded flow-sensitive points-to analysis that scales suc-
cessfully to programs up to 100K lines of code.

6. Conclusion
We have designed and implemented FSAM, a new sparse
flow-sensitive pointer analysis for multithreaded C programs
and demonstrated its scalability over the traditional data-
flow approach. Some further details can be found in its ar-
tifact. In future work, we plan to evaluate the effectiveness
of FSAM in helping some bug-detection tools in detecting
concurrency bugs such as data races and deadlocks in multi-
threaded C programs. We also plan to combine FSAM with
some dynamic analysis tools such as Google’s ThreadSani-
tizer to reduce their instrumentation overhead.

Acknowledgments
We thank all the reviewers for their constructive comments
on an earlier version of this paper. This research is supported
by ARC grants DP130101970 and DP150102109.

169

References
[1] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar.

May-happen-in-parallel analysis of X10 programs. In PPoPP
’07, pages 183–193.

[2] L. Andersen. Program analysis and specialization for the C
programming language. PhD thesis, 1994.

[3] R. Barik. Efficient computation of may-happen-in-parallel
information for concurrent Java programs. In LCPC ’05,
pages 152–169.

[4] J.-D. Choi, R. Cytron, and J. Ferrante. Automatic construction
of sparse data flow evaluation graphs. In POPL ’91, pages 55–
66.

[5] J.-D. Choi, R. Cytron, and J. Ferrante. On the efficient engi-
neering of ambitious program analysis. IEEE Transactions on
Software Engineering, 20(2):105–114, 1994.

[6] F. Chow, S. Chan, S. Liu, R. Lo, and M. Streich. Effective
representation of aliases and indirect memory operations in
SSA form. In CC ’96, pages 253–267.

[7] P. Di, Y. Sui, D. Ye, and J. Xue. Region-based may-happen-in-
parallel analysis for c programs. In ICPP ’15, pages 889–898.

[8] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos. Control Jujutsu: On
the weaknesses of fine-grained control flow integrity. In CCS
’15, pages 901–913.

[9] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Effective typestate verification in the presence of aliasing.
ACM Transactions on Software Engineering and Methodol-
ogy, 17(2):1–34, 2008.

[10] B. Hardekopf and C. Lin. Flow-Sensitive Pointer Analysis for
Millions of Lines of Code. In CGO ’11, pages 289–298.

[11] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer
analysis. In POPL ’09, pages 226–238.

[12] M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural
pointer alias analysis. ACM Transactions on Programming
Languages and Systems, 21(4):848–894, 1999.

[13] M. Hind and A. Pioli. Assessing the effects of flow-sensitivity
on pointer alias analyses. In SAS ’98, pages 57–81.

[14] P. G. Joisha, R. S. Schreiber, P. Banerjee, H. J. Boehm, and
D. R. Chakrabarti. A technique for the effective and automatic
reuse of classical compiler optimizations on multithreaded
code. In POPL’11, pages 623–636.

[15] W. Landi and B. Ryder. A safe approximate algorithm for
interprocedural aliasing. In PLDI ’92, pages 235–248.

[16] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In CGO ’04,
pages 75–86.

[17] O. Lhoták and K.-C. A. Chung. Points-to analysis with effi-
cient strong updates. In POPL ’11, pages 3–16.

[18] L. Li, C. Cifuentes, and N. Keynes. Boosting the performance
of flow-sensitive points-to analysis using value flow. In FSE
’11, pages 343–353.

[19] Y. Li, T. Tan, Y. Sui, and J. Xue. Self-inferencing reflection
resolution for Java. In ECOOP’ 14, pages 27–53.

[20] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Every-
thing You Want to Know About Pointer-Based Checking. In
SNAPL ’15, pages 190–208.

[21] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design and imple-
mentation of sparse global analyses for C-like languages. In
PLDI ’12, pages 229–238.

[22] D. Pearce, P. Kelly, and C. Hankin. Efficient field-sensitive
pointer analysis of C. ACM Transactions on Programming
Languages and Systems, 30(1), 2007.

[23] F. Pereira and D. Berlin. Wave propagation and deep propa-
gation for pointer analysis. In CGO ’09, pages 126–135.

[24] P. Pratikakis, J. S. Foster, and M. W. Hicks. LOCKSMITH:
context-sensitive correlation analysis for race detection. In
PLDI’ 06, pages 320–331.

[25] R. Rugina and M. Rinard. Pointer analysis for multithreaded
programs. In PLDI ’99, pages 77–90.

[26] A. Salcianu and M. Rinard. Pointer and escape analysis for
multithreaded programs. PPOPP ’01, 36(7):12–23.

[27] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your
contexts well: understanding object-sensitivity. POPL ’11,
pages 17–30.

[28] Y. Sui, D. Ye, and J. Xue. Static memory leak detection using
full-sparse value-flow analysis. In ISSTA ’12, pages 254–264.

[29] Y. Sui, S. Ye, J. Xue, and P.-C. Yew. SPAS: Scalable path-
sensitive pointer analysis on full-sparse ssa. In APLAS ’11,
pages 155–171.

[30] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. A. Mahlke.
Gadara: Dynamic deadlock avoidance for multithreaded pro-
grams. In OSDI’ 08, pages 281–294.

[31] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. PLDI
’04, pages 131–144.

[32] S. Ye, Y. Sui, and J. Xue. Region-based selective flow-
sensitive pointer analysis. In SAS ’14, pages 319–336.

[33] H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang. Level by level:
making flow-and context-sensitive pointer analysis scalable
for millions of lines of code. In CGO ’10, pages 218–229.

A. Artifact Description
Summary: The artifact includes full implementation of
FSAM and NONSPARSE analyses, benchmarks and scripts
to reproduce the data in this paper.

Description: You may find the artifact package and all the
instructions on how to use FSAM via the following link:
http://www.cse.unsw.edu.au/˜corg/fsam

A brief checklist is as follows:

• index.html: the detailed instructions for reproducing
the experimental results in the paper.

• FSAM.ova: virtual image file (4.6G) containing in-
stalled Ubuntu OS and FSAM project.

• Full source code of FSAM developed on top of the SVF
framework http://unsw-corg.github.io/SVF.

• Scripts used to reproduce the data in the paper including
./table2.sh and ./figure12.sh.

• Micro-benchmarks to validate pointer analysis results.

Platform: All the results related to analysis times and
memory usage in our paper are obtained on a 2.70GHz Intel
Xeon Quad Core CPU running Ubuntu Linux with 64GB
memory. For the VM image, we recommend you to allocate
at least 16GB memory to the virtual machine. The OS in the
virtual machine image is Ubuntu 12.04. A VirtualBox with
version 4.1.12 or newer is required to run the image.

License: LLVM Release License (The University of Illi-
nois/NCSA Open Source License (NCSA))

170

http://www.cse.unsw.edu.au/~corg/fsam
http://unsw-corg.github.io/SVF

	Introduction
	Challenges and Insights
	Our Solution

	Background
	Partial SSA Form
	Sparse Flow-Sensitive Pointer Analysis For Sequential C Programs

	The FSAM Approach
	Static Thread Model
	Computing Thread-Oblivious Def-Use Chains
	Computing Thread-Aware Def-Use Chains
	Interleaving Analysis
	Value-Flow Analysis
	Lock Analysis

	Sparse Analysis

	Evaluation
	Experimental Setup
	Implementation
	Methodology
	Results and Analysis

	Related Work
	Conclusion
	Artifact Description

