A U S T R A L

Never Stand Still

Heap Cloning

int main(){
int* buffer1 = getMem();
int* buffer2 = getMem();

main

}

int* getMem(){
return malloc(size);

} C program Code

UNSW Quer

Faculty of Engineering

) oo _getMem

School of Computer Science and Engilneering

Compiler Optimisations

Source Code

buffer1=getm erna()o ‘ MAINOPT_EMITTER; 6.74% SEAPRE 2A
- return malloc> | ILOAD_ISTORE_FOLDING: 1.19%
X o Front End
~ o * COPY_PROPAGATION; 4.13%
o O
dfe 2 2= o etMem T = INDUCTION_VARIABLE; 1.08%
o
bmferz:getmem‘,() Static Analysis
ﬁg S
o o © Cloni * DEAD_CODE_ELIMINATIO
oning 13.08%

Program execution

main

4)

buffer1

buffer2

M’

Static pointer analysis without heap cloning

Motivation

Static pointer analysis with heap cloning

e

Compiler
Optimisations

I

Code
Generation

I

Executable Program

" CREATE_CODEMAFP; 0.35%

“ FLOW_SENSITIVE_ANALYSIS;
34.57%

A Typical
Compiler Workflow

175.vpr

o

S

R
N
0
R

27%
26%
25%
24%
23%
22%
21%

75%

70%

65%

60%

55%

50%

Must-not AliasQueries (%)
Must-not AliasQueries (%)

20%

>3

k-Callsite Sensitivity

176.gcc

34% 80%

k-Callsite Sensitivity

300.twolf

y-Directed Adaptive Heap Cloning for Optimising Compilers

= CREATE_MU_CHI

= CREATE_SSA

“ FLOW_SENSITIVE_ANALYSIS

» CREATE_CODEMAP

* DEAD_CODE_ELIMINATION

* INDUCTION_VARIABLE

“ COPY_PROPAGATION

“|LOAD_ISTORE_FOLDING
MAINOPT_EMITTER

“ SSA_PRE

" CREATE_MU_CHI; 32.69%

" CREATE_SSA; 3.98%

A total of 496304 alias queries generated from optimisations in Open64
compiler for analysing CPU2000 C benchmarks

255.vortex

Full heap cloning
is overkill !

>3

and

Different programs

33% 70%

oooooooooo

33%
32%

60%
50%

32%
31%
31%
30%
30%
29%

40%
30%
20%
10%

0%

Must-not AliasQueries (%)
Must-not AliasQueries (%)

1
k-Callsite Sensitivity

3 >3

require different
levels of precision !

>3

k-Callsite Sensitivity

Very costly to reason about full heap cloning on large size program with high-density call graph Compiler optimisations of diverse programs benefit in different precision levels of heap cloning

Approach

Heap-Aware Pointer
Solver
Selecting Candidate
Heap Objects

Adaptive
Update

Enable lterative
heap cloning
only where

it iIs necessary
according to
queries !

) [9A97] Buluo|H

QUDA: QUery-Directed Adaptive
heap cloning

QUDA performs heap cloning on parts
of the program according to clients' need
in a demand-driven fashion

Results

14 o
ulcra
< 12
ST " QUDA
+
g 8
O 6
(2]
i 4
g 2 11
< 0 A
Q@@Qoé,b G.;be‘ \?’0‘\6‘ Q‘Qe’
% &)
& ’(\&& o (0 > 0‘ &0 066\ < 40 4
Q &£ >

Analysis overhead compared to Fulcra (state-of-the-art)

14
gcc

=¥ hmmer
jpeg
—>—mesa
=-® perlbmk
rasta
sendmail
-8 - vortex

12

-
o

% of Analysis Time

o N A O O

2

3

An Example
D &
CIC) (

Alias Query is not answered positively

Alias Query
<*p,*q>

may-alias

Alias Query

Alias Query

Alias Query

>

Alias Query

<*p,*g>
COHCH p
All done
N ~ must-not-alias Cannot be
cloned further
_______________________ o0 o0
heap object v \-/

k=0

Alias Query is answered positively

QUDA heap cloning (1st Iteration)

Alias Query is answered positively

QUDA heap cloning (2nd Iteration)

procedure

Alias Query is answered positively

QUDA heap cloning (3rd lteration)

QUDA performs k-callsite-sensitive heap cloning iteratively, starting with k = 0 (without heap cloning), so that an abstract heap object is cloned
at iteration k =i + 1 only if some alias queries that are not answered positively at iteration k =1 may now be answered more precisely.

Tool Framework

100

80
S 60 Heap-Aware Pointer Analysis
S .0 =TS Alias Tag
g Source m Bottom | Bottom-up | Code Executable
B Code Generation Program
(14 0 o

. write into
Qe R D . DN &S
& (}%‘ & & 6&‘0‘2’0” & (&9 ,bﬂq’e;(o & 6@0 & & 4Q0&°Q i
AR E ey 2 S ELF files

Heap objects reduced by QUDA over Fulcra

100
< 90 gcc
@ =¥ ~hmmer
o 80 B
a 70 Lt w jpeg
< 60 - —>mesa
[<}])\ .
Qo 50 N -+# perlbmk
2 40 AN
.g & N : rasta
§ 30 TN N\ sendmail
...O_ 20 e \h \ —# - vortex
1 2 3 4 5 6

Constraint
Graphs

Update

QUDA Framework in the Open64

(*.G, *.I)

Candidate
Query Selection

Compiler

QUDA is implemented in industry-strength compiler Open64 scales up to 200K lines of code.
It has the same precision as the state-of-the-art, but is significantly more scalable.

k-Callsite-Sensitivity Heap Cloning

QUDA analysis time per iteration over the total

k-Callsite-Sensitivity Heap Cloning

QUDA alias queries to be answered at each iteration

For 10 SPEC2000 C benchmarks and 5 C applications (totalling 840 KLOC) evaluated,

QUDA takes only 4+ minutes but exhaustive heap cloning takes 42+ minutes to complete.

