
 Query-Directed Adaptive Heap Cloning for Optimising Compilers

Heap Cloning

buffer1=getmem()

buffer2=getmem()

return malloc

return malloc

buffer1

buffer2

heap

int main(){
 int* buffer1 = getMem();
 int* buffer2 = getMem();
}

int* getMem(){
 return malloc(size);
}

buffer1

buffer2

heap1

heap

heap2

main getMem main getMem

main getMem

getMem

C program Code Program execution

Static pointer analysis without heap cloning Static pointer analysis with heap cloning

Compiler Optimisations

Front End

Static Analysis

Source Code

Compiler
Optimisations

Code
Generation

Executable Program

Heap
Cloning

A Typical
Compiler Workflow

A total of 496304 alias queries generated from optimisations in Open64
compiler for analysing CPU2000 C benchmarks

Motivation

Very costly to reason about full heap cloning on large size program with high-density call graph

50%

55%

60%

65%

70%

75%

80%

0 1 2 3 >3 M
us

t-
no

t A
lia

sQ
ue

ri
es

 (%
)

k-Callsite Sensitivity

M
us

t-
no

t A
lia

sQ
ue

ri
es

 (%
)

k-Callsite Sensitivity

175.vpr

29%

30%

30%

31%

31%

32%

32%

33%

33%

34%

0 1 2 3 >3

M
us

t-
no

t A
lia

sQ
ue

ri
es

 (%
)

k-Callsite Sensitivity

M
us

t-
no

t A
lia

sQ
ue

ri
es

 (%
)

k-Callsite Sensitivity

176.gcc

20%

21%

22%

23%

24%

25%

26%

27%

28%

0 1 2 3 >3

M
us

t-
no

t A
lia

sQ
ue

ri
es

 (%
)

k-Callsite Sensitivity

255.vortex

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 >3

M
us

t-
no

t A
lia

sQ
ue

ri
es

 (%
)

k-Callsite Sensitivity k-Callsite Sensitivity

300.twolf

Compiler optimisations of diverse programs benefit in different precision levels of heap cloning

Different programs
require different

levels of precision !

Full heap cloning
is overkill !

and

Approach

Alias Queries

C
loning Level k

k++

Heap-Aware Pointer
Solver

Selecting Candidate
Heap Objects

Adaptive
Update

Enable Iterative
heap cloning
only where
it is necessary
according to
queries !

QUDA: QUery-Directed Adaptive
heap cloning

QUDA performs heap cloning on parts
of the program according to clients' need

in a demand-driven fashion

An Example

Alias Query is not answered positively

procedure
heap object

k=0

k=1

k=2

k=3

<*p,*q>
Alias Query

may-alias

procedure
heap object

k=0

k=1

k=2

k=3

<*p,*q>
Alias Queryp

p

q

q may-alias

procedure
heap object

k=0

k=1

k=2

k=3

<*p,*q>
Alias Query

may-alias

procedure
heap object

k=0

k=1

k=2

k=3

<*p,*q>
Alias Query

must-not-alias

procedure
heap object

k=0

k=1

k=2

k=3

<*p,*q>
Alias Queryp

p

q

q

procedure
heap object

k=0

k=1

k=2

k=3

<*p,*q>
Alias Query

All done
Cannot be

cloned further

Alias Query is not answered positively Alias Query is not answered positively

Alias Query is answered positively Alias Query is answered positively Alias Query is answered positively

p
q

must-not-alias

QUDA heap cloning (1st Iteration)
QUDA performs k-callsite-sensitive heap cloning iteratively, starting with k = 0 (without heap cloning), so that an abstract heap object is cloned
at iteration k = i + 1 only if some alias queries that are not answered positively at iteration k = i may now be answered more precisely.

QUDA heap cloning (2nd Iteration) QUDA heap cloning (3rd Iteration)

Results

0

2

4

6

8

10

12

14

1 2 3 4 5 6

gcc
hmmer
jpeg
mesa
perlbmk
rasta
sendmail
vortex %

 o
f A

na
ly

si
s

Ti
m

e

k-Callsite-Sensitivity Heap Cloning

0

20

40

60

80

100

am
mp

cr
aft

y
gap

gcc

hmmer

ice
ca

st
jpeg

mes
a

par
se

r

per
lbmk

ra
sta

se
ndmail

tw
olf

vo
rte

x
vp

r

av
er

ag
e

R
ed

uc
tio

n
(%

)

0
2
4
6
8

10
12
14

am
mp

cra
fty

gap

gcc

hmmer

ice
ca

st
jpeg

mes
a

pars
er

perl
bmk

ras
ta

se
ndmail

tw

olf

vo
rte

x
vp

r

av
era

ge

Fulcra
QUDA

A
na

ly
si

s
O

ve
rh

ea
d

16x22x

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6

gcc

hmmer

jpeg

mesa

perlbmk

rasta

sendmail

vortex

k-Callsite-Sensitivity Heap Cloning

%
 o

f Q
ue

rie
s

to
 B

e
An

sw
er

ed

Analysis overhead compared to Fulcra (state-of-the-art) Heap objects reduced by QUDA over Fulcra

QUDA analysis time per iteration over the total QUDA alias queries to be answered at each iteration

Tool Framework

QUDA Framework in the Open64 Compiler

Front
End

Heap-Aware Pointer Analysis

WOPT Code
Generation

Constraint
Graphs

Candidate
Query Selection

Top-Down Bottom-up

Adaptive
Update

ELF files
(*.G, *.I)

write into

read

Alias Tag

Cloning Level K++

Source
Code

Executable
Program

QUDA is implemented in industry-strength compiler Open64 scales up to 200K lines of code.
It has the same precision as the state-of-the-art, but is significantly more scalable.

For 10 SPEC2000 C benchmarks and 5 C applications (totalling 840 KLOC) evaluated,
QUDA takes only 4+ minutes but exhaustive heap cloning takes 42+ minutes to complete.

