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Never Stand Still

Heap Cloning

int main(){
int* buffer1 = getMem();
int* buffer2 = getMem();

main

}

int* getMem(){
return malloc(size);

} C program Code
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Static pointer analysis without heap cloning

Motivation

Static pointer analysis with heap cloning
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y-Directed Adaptive Heap Cloning for Optimising Compilers
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A total of 496304 alias queries generated from optimisations in Open64
compiler for analysing CPU2000 C benchmarks
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Full heap cloning
is overkill !
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Very costly to reason about full heap cloning on large size program with high-density call graph Compiler optimisations of diverse programs benefit in different precision levels of heap cloning

Approach
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QUDA: QUery-Directed Adaptive
heap cloning

QUDA performs heap cloning on parts
of the program according to clients' need
in a demand-driven fashion
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Analysis overhead compared to Fulcra (state-of-the-art)
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Alias Query is answered positively

QUDA heap cloning (1st Iteration)

Alias Query is answered positively

QUDA heap cloning (2nd Iteration)

procedure

Alias Query is answered positively

QUDA heap cloning (3rd lteration)

QUDA performs k-callsite-sensitive heap cloning iteratively, starting with k = 0 (without heap cloning), so that an abstract heap object is cloned
at iteration k =i + 1 only if some alias queries that are not answered positively at iteration k =1 may now be answered more precisely.

Tool Framework
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Heap objects reduced by QUDA over Fulcra
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QUDA Framework in the Open64
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QUDA is implemented in industry-strength compiler Open64 scales up to 200K lines of code.
It has the same precision as the state-of-the-art, but is significantly more scalable.

k-Callsite-Sensitivity Heap Cloning

QUDA analysis time per iteration over the total

k-Callsite-Sensitivity Heap Cloning

QUDA alias queries to be answered at each iteration

For 10 SPEC2000 C benchmarks and 5 C applications (totalling 840 KLOC) evaluated,

QUDA takes only 4+ minutes but exhaustive heap cloning takes 42+ minutes to complete.



