
                     Query-Directed Adaptive Heap Cloning for Optimising Compilers
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A total of 496304 alias queries generated from optimisations in Open64 
compiler for analysing CPU2000 C benchmarks

Motivation

Very costly to reason about full heap cloning on large size program with high-density call graph
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Compiler optimisations of diverse programs benefit in different precision levels of heap cloning

Different programs
require different 

levels of precision !

Full heap cloning 
is overkill !

and 

Approach
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Selecting Candidate       
Heap Objects     

Adaptive
Update

Enable Iterative 
heap cloning 
only where 
it is necessary
according to
queries !

QUDA: QUery-Directed Adaptive 
heap cloning

QUDA performs heap cloning on parts 
of the program according to clients' need 

in a demand-driven fashion

An Example
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QUDA heap cloning (1st Iteration)
QUDA performs k-callsite-sensitive heap cloning iteratively, starting with k = 0 (without heap cloning), so that an abstract heap object is cloned 
at iteration k = i + 1 only if some alias queries that are not answered positively at iteration k = i may now be answered more precisely.   

QUDA heap cloning (2nd Iteration) QUDA heap cloning (3rd Iteration)

Results
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Analysis overhead compared to Fulcra (state-of-the-art) Heap objects reduced by QUDA over Fulcra

QUDA analysis time per iteration over the total QUDA alias queries to be answered at each iteration

Tool Framework

QUDA Framework in the Open64 Compiler
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QUDA is implemented in industry-strength compiler Open64 scales up to 200K lines of code.  
It has the same precision as the state-of-the-art, but is significantly more scalable.  

For 10 SPEC2000 C benchmarks and 5 C applications (totalling 840 KLOC) evaluated, 
QUDA takes only 4+ minutes but exhaustive heap cloning takes 42+ minutes to complete.


