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Abstract
This paper presents SVF, a tool that enables scalable and precise in-
terprocedural Static Value-Flow analysis for C programs by lever-
aging recent advances in sparse analysis. SVF, which is fully im-
plemented in LLVM (version 3.7.0), allows value-flow construc-
tion and pointer analysis to be performed in an iterative manner,
thereby providing increasingly improved precision for both. SVF
accepts points-to information generated by any pointer analysis
(e.g., Andersen’s analysis) and constructs an interprocedural mem-
ory SSA form, in which the def-use chains of both top-level and
address-taken variables are captured. Such value-flows can be sub-
sequently exploited to support various forms of program analysis or
enable more precise pointer analysis (e.g., flow-sensitive analysis)
to be performed sparsely. By dividing a pointer analysis into three
loosely coupled components: Graph, Rules and Solver, SVF pro-
vides an extensible interface for users to write their own solutions
easily. Moreover, our memory SSA design allows users to make
scalability and precision trade-offs by defining their own memory
partitioning strategies. We discuss some usage scenarios and our
previous experiences in using SVF in several client applications.

SVF is available at http://svf-tools.github.io/SVF.

1. Introduction
Due to the sheer complexity of modern software systems, finding
and fixing software bugs is far cheaper earlier in the software devel-
opment life cycle (e.g., during the coding stage) than later (e.g., dur-
ing the testing stage), resulting in higher quality software [9, 39].
Static analysis, which approximates the runtime behaviour of a pro-
gram at compile time, is a fundamental approach to helping devel-
opers catch bugs effectively in early stages of software develop-
ment.

In static analysis, a fundamental research problem is to resolve
program dependencies (aka value-flows). The more precisely the
value-flows are resolved, the more effective static analysis will
be. By improving the precision and scalability of static value-flow
analysis, we can significantly improve the effectiveness of virtually
all other forms of program analysis on detecting a variety of bugs,
such as memory leaks [11, 36], uninitialised variables [43], security
vulnerabilities [28], and tainted information flow [4, 8].

Static value-flow analysis resolves both the data and control de-
pendences of a program. It was initially adopted in software debug-
ging [40, 41] and optimising compilers [17, 33] by providing ex-
plicit definition-use relations of program variables. This fundamen-
tal technique has subsequently been used widely for program analy-
sis and verification in many open-source and commercial tools. The
Wisconsin program-slicing project [22] is a well-known research
prototype that supports both forward and backward slicing on its
program dependence graph. Later, the tool was integrated into the
commercial product CodeSurfer [2]. WALA [23] is an open-source
Java analysis framework that provides interprocedural data-flow
analysis and a context-sensitive tabulation-based slicer. Recently,

Heros [7] also includes an IFDS/IDE [32] solver for analysing
single- and multi-threaded code in the Soot framework [25]. Some
industry static analysis tools that use program dependence analysis
include Coverity [6] from Synopsys, Parfait [13] from Oracle, and
SLAM (built on top of Microsoft’s in-house compiler) [5].

For the mainstream open-source compilers (e.g., GCC and
LLVM), most of program dependence analyses used are intraproce-
dural with limited alias analysis support, as is the case for LLVM’s
memory dependence analysis. However, many client applications,
such as memory leak detection, require value-flows to be analysed
across the procedural boundaries, for which interprocedural analy-
sis is essential.

The traditional iterative approach for computing interprocedu-
ral value-flows is costly and unscalable for large programs. Recent
progresses in sparse analysis [19, 30, 36, 38, 44, 45] provide a
promising solution for analysing large programs scalably and pre-
cisely. To avoid expensive propagation of data-flow facts across a
program’s control flow graph, sparse analysis is usually conducted
in stages: a pre-analysis is first applied to over-approximate a pro-
gram’s def-use chains, which are then refined by performing a data-
flow analysis sparsely, i.e., only along such pre-computed def-use
relations.

In this paper, we present SVF, a tool that enables scalable
and precise interprocedural analysis for C programs by leverag-
ing recent advances in sparse analysis. SVF allows value-flow con-
struction and pointer analysis to be performed iteratively, thereby
providing increasingly improved precision for both. SVF accepts
points-to information generated by any pointer analysis (e.g., An-
dersen’s analysis) and builds an interprocedural memory SSA
(Static-Single Assignment) form so that the def-use chains of both
top-level and address-taken variables are captured. These value-
flows can be subsequently exploited to support various forms of
program analysis or enable more precise pointer analysis (e.g.,
flow-sensitive analysis) to be performed sparsely.

SVF is fully implemented in an industry-strength compiler
LLVM (in its latest version 3.7.0). The LLVM platform [26] is
designed as a set of reusable libraries with a well-defined IR (In-
termediate Representation). It has been recognised as a common
infrastructure to support analysis and transformation with many
front-ends (e.g., C/C++, Objective-C/C++, OpenMP, Java [14] and
Javascript [3]). By using the LLVM IR as input, SVF can poten-
tially tap into LLVM’s front-ends to handle programs written in
other languages (in addition to C).

2. Design Overview
Our SVF framework is depicted in Figure 1. The source code of
a program is first compiled by clang into bit-code files, which
are merged by LLVM Gold Plugin at link time stage (LTO) to
produce a whole-program bc file. Then the “Pointer Analysis”
module is invoked. Based on the points-to information obtained, the
“Value-Flow Construction” module puts the program in memory
SSA form so that the def-use chains for top-level and address-
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Figure 1. Overview of SVF.

taken variables are identified. These value-flows can be used by
a variety of “Client Applications”, as discussed in Section 4. If
better precision is desired by a client, the current value-flows and
points-to information can both be refined iteratively by performing
a sparse pointer analysis based on the current value-flows [19, 30,
36, 38, 44, 45], as highlighted by the edge directed from “Value-
Flow Construction” to “Pointer Analysis”.

2.1 Pointer Analysis
Existing implementations for C [19, 27, 45] compute points-to in-
formation directly on the LLVM IR of a program, thereby mak-
ing them difficult to maintain and extend. In contrast, our design
consists of three loosely coupled components, Graph, Rules, and
Solver. Graph is a higher-level abstraction extracted from the
LLVM IR of a program, indicating where pointer analysis should
be performed. The Rules component defines how to derive the
points-to information from each statement, i.e., each constraint on
the graph. Solver determines in what order to resolve all the con-
straints.

As a result, SVF provides a clean and reusable interface for users
to write their own pointer analysis implementations by combining
our three components in a flexible way. For example, Andersen’s
pointer analysis can be written easily by choosing an appropriate
solver, e.g., Wave [31] and applying transitive closure rules [1]
on an inclusion-based constraint graph. Similarly, a flow-sensitive
pointer analysis can be implemented by applying a set of flow-
sensitive strong/weak update rules with a points-to propagation
solver on a sparse value-flow graph [19, 36].

2.2 Value-Flow Construction
Based on the points-to information obtained, we first perform a
lightweight “Mod-Ref Analysis” to capture interprocedural ref-
erence and modification side-effects for each variable [37, Section
4.2.1]. Thus, the (alias) set of indirect defs (uses) at a statement s
(i.e., a store, load or callsite) in each procedure is obtained and de-
noted asDs (Us). The “Mem Region Partitioning” module allows
users to partition memory into a set of (not necessarily disjoint) re-
gions R1, . . . , Rn so that scalability and precision trade-offs can
be made in analysing large programs. Then statement s is anno-
tated with every Ri, where Ds ∩ Ri 6= ∅ (Us ∩ Ri 6= ∅), to make
explicit the abstract memory objects that may be defined (used) in-
directly at s. Note that in Open64 [12] and GCC [29], their memory
SSA forms are computed only intraprocedurally, rendering all non-
local variables to be placed in one single alias set. Once indirect
uses and defs are known, the “Memory SSA” module is invoked
to put the program in memory SSA form using a standard SSA con-
version algorithm [15]. Finally, the value-flows in the program are
captured in a VFG (Value-Flow Graph) by connecting a def of a
variable with its uses, accomplished by the “VFG Construction”
module.

3. Sparse Value-Flow Representation
We describe below how SVF uses a VFG representation to capture
the value-flows in a program. For simplicity, we assume that dis-
tinct abstract memory objects are in distinct regions. We adopt the
convention of LLVM by separating the set V of all variables in a
program into two subsets, (1)A containing all possible targets, i.e.,
address-taken variables of pointers and (2) T containing all top-
level variables whose addresses are not taken, where V = T ∪ A.

A sparse VFG for a program is a directed graph that captures
the def-use chains of all variables [19, 36]. The def-use chains for
top-level variables are readily available once they are in SSA form.
Address-taken variables are accessed indirectly at loads and stores.
Their def-use chains are built in several steps [12, 36]. First, the
points-to information for the program is computed by using, e.g.,
Andersen’s analysis. Second, a load p = ∗q is annotated with a
function µ(o) for each variable o ∈ A that may be pointed to by
q ∈ T to represent a potential use of o at the load. Similarly, a store
∗p = q is annotated with o = χ(o) for each variable o ∈ A that
may be pointed to by p ∈ T to represent a potential def and use of
o at the store. If o can be strongly updated, then o receives whatever
q points to and the old contents in o are killed. Otherwise, o must
also incorporate its old contents, resulting in a weak update to o. A
callsite cs is also annotated with µ(o) and o = χ(o), where o ∈ A,
to capture interprocedural uses and defs of o. Likewise, o = χ(o)
(µ(o)) is annotated at the entry (exit) of a procedure f to mimic the
parameter passing (return) for a non-local variable o ∈ A. Third, all
address-taken variables are converted to SSA form, with each µ(o)
operation being treated as a use of o and each o = χ(o) operation
being treated as both a def and a use of o.

3.1 VFG Construction
Given a program with annotated µ and χ functions after the SSA
conversion, its VFG is constructed by connecting the def of each
SSA variable v ∈ V with its uses. Each node in the VFG represents
one of the following:

• A definition of a variable at a non-call statement `:

COPY (` : p = q): p@`;

PHI (` : v3 = φ(v2, v1)): v3@`;

LOAD (` : p = ∗q [µ(o)]): p@`; and

STORE (` : ∗p = q [o2 = χ(o1)]): o2@`.
• A variable defined (directly or indirectly) as a return value at a

callsite `cs : r = f( ) [µ( )] [o = χ( )]:

DRET (Value Directly Returned): r@`cs; and

IRET (Value Indirectly Returned): o@`cs.
• A parameter defined (directly or indirectly) at the entry of a

procedure f(..., p, ...){[o = χ( )] ... [µ( )] return }:

DPARA (Parameter Directly Initialised): p@`f .



Table 1. Rules for building VFG (p, q, r, x ∈ T , o ∈ A, v ∈ V) .
Rule Statement (SSA) Value-Flow Edges

COPY ` : p = q p@`←−↩ q@`′

PHI ` : v3 = φ(v1, v2) v3@`←−↩ v1@`′ v3@`←−↩ v2@`′′

LOAD ` : p = ∗q [µ(o)] p@`←−↩ o@`′

STORE ` : ∗p = q [o2 = χ(o1)] o2@`←−↩ q@`′ o2@`←−↩ o1@`′′

CALL
`cs : r = f(..., p, ...) [µ(o1)] [o2 = χ( )] q@`f ←−↩ p@`1 r@`cs←−↩ x@`2
`f : f(..., q, ...){[o3 = χ( )] ... [µ(o4)] return x} o3@`f ←−↩ o1@`3 o2@`cs←−↩ o4@`4

IPARA (Parameter Indirectly Initialised): o@`f .

An edge between two nodes is added to represent either a direct
value-flow for a top-level variable or an indirect value-flow for an
address-taken variable. Table 1 lists the rules used.

For a COPY assignment between two top-level pointers ` : p =
q, a direct value-flow edge is added from the def of q at `′ to the def
of p at ` based on the def-use information of q. Instead of linking
the def of q to the use of q and then linking this use to the def of p,
we add one single edge p@`←−↩ q@`′ directly. We do the same in
the other rules.

For a PHI statement ` : v3 = φ(v2, v1) at a control-flow
joint point, the value-flows are connected from the defs v1@`′ and
v2@`

′′ of the old SSA instances v1 and v2 of variable v ∈ V to the
def v3@` of the new instance v3.

A LOAD ` : p = ∗q annotated with µ(o) indicates that o
may be used indirectly via ∗q. Thus, the indirect value-flow of o is
connected from its def o@`′ to p@`. Similarly, a STORE ` : ∗p = q
annotated with o2 = χ(o1) represents the fact that either the value
of o is completely overwritten by the value from q@`′ (a strong
update) or the old value from its previous def o1@`′′ must be also
preserved (a weak update).

When handling parameter/return passing, the CALL rule shows
how to connect interprocedural value-flows for both top-level
pointers p, q, r and x as well as an address-taken variable o. A
direct value-flow edge q@`f ←↩ p@`1 is connected from the def
(at `1) of an actual parameter p at a callsite `cs to its correspond-
ing formal parameter q in a callee f (for DPara). Similarly, r@`cs
←↩ x@`2 captures the direct value-flow of x (with its def at `2)
returned from f to its caller at `cs (for DRet).

Handling the indirect value-flows for address-taken variables is
conceptually the same as handling the direct value-flows for top-
level variables. Given µ(o1) annotated at callsite `cs, we know that
o may be used in a callee procedure f . As a result, o3 = χ( )
annotated at the entry of f can be understood as an implicit formal
parameter receiving o. Thus, an indirect value-flow o3@`f ←↩
o1@`3 is connected, with the def of o1 at `3 (for IPara). Likewise,
o2@`cs ←↩ o4@`4 captures the indirect value-flow of o returned
from f its caller at `cs, with the def of o4 at `4 (for IRet).

As is standard for supporting context-sensitive analysis, the
call and return edges at a callsite cs are labelled with (cs and
)cs, respectively. Therefore, context sensitivity can be solved as a
reachability analysis formulated as a balanced-parentheses problem
in the standard manner by matching calls and returns to filter out
unrealisable interprocedural paths [32].

3.2 Example
Figure 2 shows a simple C program in Figure 2(a), its memory SSA
in Figure 2(b), and the value-flows starting from the def of p at 1
(source) to 6 (sink) in Figure 2(c). Andersen’s pointer analysis is
first performed to determine that q points-to an object o ∈ A. Then
χ functions are added at the entries of main and foo and the store
at 2 to represent the indirect defs of o, and µ added at the callsite
at 5 and the load at 4 to represent the indirect uses of o.

①
int main(){
    char** q = &o;
    char* p = source();
    *q = p;
    r = foo(q);
    sink (r);
}

char* foo(char** q){
    char* t = *q;
    return t;
}

define i32 @main() {  
  q = alloca_o;                // object o
  p = source() ;
  store  q, p; [o2 = !(o1) ]

  r = foo(q);   ["(o2) ]        // callsite cs
  sink(r);
}

define i8* @foo(i8** q) {         [ o3 = !(_) ]               
  t = load q;  ["(o3) ]
  ret t;
}

①

②

③
④

source sink

⑤
⑥

(a)&C&Program (b)&Memory&SSA&

(c)&Value78lows&of&o&from&source&to&sink

&direct&value78low &indirect&value78low

(cs cs)
② ③ ④ ⑤ ⑥

Figure 2. A value-flow example.

Figure 3 shows part of a VFG generated by SVF, illustrating
some program dependences of a small program art in SPEC2000.
Just like in the case of a constraint graph, SVF also highlights dif-
ferent types of nodes in a VFG in different colors, e.g., COPY (in
black), LOAD (in red), STORE (in blue) and
DPARA/IPARA/DRET/IRET (in yellow). In addition, the direct
and indirect value-flow edges are shown as solid and dotted ar-
rows, respectively. The call and return edges are depicted in red
and blue, respectively.

Figure 4 shows a screenshot of our eclipse plugin that accepts
the output of SVF’s analysis results. It shows a typical source-sink
related-bug detected by SVF on its VFG. The program is a simple
test case from NIST’s Juliet Test Suite. When tracing along the
program’s value-flows, SVF reports a use-after-free error that the
pointer variable, data, is used in printf function at line 37 after it
has been freed at line 33. The plugin reads the value-flow traces and
maps them to the original source code according to the debugging
information in LLVM IR. It provides a simple yet clean reporting
interface with a “problem” tab at the bottom of the eclipse IDE for
developers to pinpoint the point of the bug easily.

4. Usage Scenarios
We discuss below four usage scenarios as well as our previous
experience in using SVF in the past few years.

4.1 Source-Sink Analysis
Many software bug detection methods can be formulated as one
of reasoning about some source-sink properties via value-flow
reachability. A typical client is memory leak detection, which in-



Figure 3. A screenshot for the VFG of art in SPEC2000.

Figure 4. A screenshot of use-after-free detection in our eclipse plugin.

volves checking whether a memory allocation (source) must even-
tually reach a free site (sink) along every execution path of the
program. Given the value-flows for both top-level and address-
taken variables, our leak detector SABER [36, 37] exploits a sweet
spot in the precision/scalability tradeoff. SABER is as accurate as
SPARROW [24] (a detector using abstract interpretation) in terms
of finding real leaks and suppressing false alarms, while achieving
comparable analysis performance as the fastest but less precise de-
tector FASTCHECK [11]. Other bug detectors for checking source-
sink properties, such as double-free, file open-close errors, and uses
of tainted data, can also be developed easily in the SVF framework.

4.2 Pointer Analysis
Our sparse value-flow framework also opens up more opportunities
for the design and implementation of scalable and precise pointer
analyses. Our recent solution, SELFS [44], performs selective flow-
sensitive pointer analysis on partitioned program regions based on
pre-computed value-flow information. SELFS is able to infer the
program parts where flow-sensitivity is needed by reasoning about
the value-flow properties with load-precision-preserving resolution
(implying that a pointer loaded from memory always maintains
the same points-to results as the flow-sensitive analysis). Another
recent work, FSAM [34] which is built on top of SVF, performs
sparse flow-sensitive pointer analysis by applying a series of thread
interference analysis phases for multithreaded C programs. Other
pointer analysis variants (e.g., adaptive heap cloning [35]) are also
made possible in our extensible SVF framework.

4.3 Accelerating Dynamic Analysis
Dynamic analysis, which monitors program execution behaviour
using instrumentation, introduces a certain amount of runtime over-

head. One possible client of SVF here is to perform selective instru-
mentation guided by static value-flow information, so that unnec-
essary instrumentations can be eliminated to reduce runtime over-
head. In our previous work [43], we reported a tool called USHER
for accelerating dynamic detection of undefined variables. USHER
uses interprocedural value-flow analysis to identify the redundant
shadow operations where instrumentation can be safely removed.
Similar ideas can be applied to detect other bugs such as null deref-
erence and buffer-overflow errors [42]. Furthermore, it is also inter-
esting to see how to incorporate our static value-flow analysis into
symbolic execution [10] and dynamic data-flow testing [16] to help
both generate meaningful test cases more quickly.

4.4 Program Debugging and Understanding
SVF can also be used as a foundation for software debugging and
program understanding [18, 21, 40]. SVF can provide develop-
ers with the statements that are potentially the causes of some
erroneous behavior efficiently by tracing only the relevant value-
flows, thereby bypassing many irrelevant statements in the process
of localizing a bug. Scalable and precise interprocedural value-
flow analysis is also helpful to software visualisation (e.g., code
map [20]) for understanding large code bases.

5. Conclusion
In this paper, we have presented SVF, a scalable and precise inter-
procedural static value-flow analysis that serves as a foundation for
program understanding and software bug detection. We have imple-
mented SVF fully in LLVM with over 40 KLOC in C++ presently.

• The full source code can be downloaded from https://
github.com/unsw-corg/SVF.



• A micro-benchmark suite including hundreds of synthetic
and real test cases for validating the correctness of pointer
analysis algorithms can be found at https://github.com/
unsw-corg/PTABen.

• A working demonstration of SVF in a virtual machine can
be found at https://github.com/unsw-corg/SVF/wiki/
Try-SVF-in-VirtualBox.

In the past few years, SVF has been shown to provide an effec-
tive solution to several client applications in handling large real-
world C programs. Our future work includes an extension for sup-
porting object-oriented languages such as C++ and Objective-C.
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