
Path-Sensitive and Alias-Aware Typestate Analysis for
Detecting OS Bugs

Tuo Li
Tsinghua University

Beijing, China

Jia-Ju Bai
Tsinghua University

Beijing, China

Yulei Sui
University of Technology Sydney

Sydney, Australia

Shi-Min Hu
Tsinghua University

Beijing, China

ABSTRACT
Operating system (OS) is the cornerstone for modern computer
systems. It manages devices and provides fundamental service for
user-level applications. Thus, detecting bugs in OSes is important
to improve reliability and security of computer systems. Static
typestate analysis is a common technique for detecting different
types of bugs, but it is often inaccurate or unscalable for large-size
OS code, due to imprecision of identifying alias relationships as well
as high costs of typestate tracking and path-feasibility validation.

In this paper, we present PATA, a novel path-sensitive and alias-
aware typestate analysis framework to detect OS bugs. To improve
the precision of identifying alias relationships in OS code, PATA
performs a path-based alias analysis based on control-flow paths
and access paths. With these alias relationships, PATA reduces
the costs of typestate tracking and path-feasibility validation, to
boost the efficiency of path-sensitive typestate analysis for bug
detection. We have evaluated PATA on the Linux kernel and three
popular IoTOSes (Zephyr, RIOT and TencentOS-tiny) to detect three
common types of bugs (null-pointer dereferences, uninitialized-
variable accesses and memory leaks). PATA finds 574 real bugs with
a false positive rate of 28%. 206 of these bugs have been confirmed
by the developers of the four OSes. We also compare PATA to seven
state-of-the-art static approaches (Cppcheck, Coccinelle, Smatch,
CSA, Infer, Saber and SVF). PATA finds many real bugs missed by
them, with a lower false positive rate.

CCS CONCEPTS
• Software and its engineering→ Software defect analysis; •
Security and privacy → Operating systems security.

KEYWORDS
static analysis, operation system, bug detection
ACM Reference Format:
Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. 2022. Path-Sensitive and Alias-
Aware Typestate Analysis for Detecting OS Bugs. In Proceedings of the 27th

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507770

ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’22), February 28 – March 4,
2022, Lausanne, Switzerland. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3503222.3507770

1 INTRODUCTION
Operating system (OS) is the fundamental software of modern
computer systems. Apart from classical general-purpose OSes (such
as the Linux kernel), many new OSes have been developed for
specific purposes. For example, due to the rise of IoT techniques,
many IoTOSes (such as Zephyr) have been developed tomanage IoT
devices and support IoT applications. However, each OS inevitably
has bugs, as it is quite large and complex. Even a simple OS bug
(such as null-pointer dereference) can cause system crash, malicious
attack and other runtime problems [72]. Thus, it is important to
detect OS bugs to secure the foundation of computer systems.

Static typestate analysis [66] is a common technique to detect
different types of bugs. Typestates associate state information with
each program variable. This state information is used to determine
which operations can be validly invoked upon a given variable.
A typestate property is a finite state machine (FSM) to determine
whether a sequence of observable operations are valid, and an in-
valid operation sequence can potentially cause a bug. Typestate
analysis typically performs on top of the control-flow graph (CFG)
of a program. To improve accuracy, some approaches [27, 29] per-
form path-sensitive analysis but focus on analyzing scalars not
pointers. To solve this problem, some typestate approaches [32, 77]
consider pointer alias relationships using imprecise flow-insensitive
points-to analysis. Unfortunately, flow-insensitive alias results used
in path-sensitive analysis can potentially introduce many false posi-
tives in bug detection, especially for large-size programs (like OSes)
containing complex alias relationships.

Similar to typestate analysis, some generic static tools [8, 24,
25, 30, 55, 65] can detect different types of OS bugs based on pre-
defined rules or variable states. Most of these approaches are path-
insensitive (except CSA [25]) and use imprecise alias analysis (e.g.,
flow-insensitive analysis) or even ignore aliases, so they often report
false positives and miss many real bugs.

To improve the accuracy of path-sensitive typestate analysis, it
is important to capture precise alias relationships. However, there
are two difficulties for analyzing OS code: (D1) Points-to analysis is
insufficient to identify precise alias relationships in OSes. Generally,
points-to analysis needs to model heap objects per memory allo-
cation. However, due to the multi-module and application-driven

859

https://doi.org/10.1145/3503222.3507770
https://doi.org/10.1145/3503222.3507770
https://doi.org/10.1145/3503222.3507770

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu

FILE: linux-5.6/drivers/media/platform/s5p-mfc/s5p_mfc.c
1266. static int s5p_mfc_probe(struct platform_device *pdev) {

1280. dev->plat_dev = pdev; // create alias relationship
1281. if (!dev->plat_dev) { // pdev can be NULL
1282. dev_err(&pdev->dev, ...); // Null-pointer dereference!
1283. return -ENODEV;
1284. }

1415. }

// These interface functions have no explicit caller functions
// in the OS code
1664. static struct platform_driver s5p_mfc_driver = {
1665. .probe = s5p_mfc_probe,
1666. .remove = s5p_mfc_remove,

1672. }

Module interface functions

Figure 1: A real null-pointer dereference in Linux 5.6.

nature of OSes, many functions do not have explicit caller func-
tions. Thus, their pointer parameters can have incomplete points-to
information, causing points-to analysis to miss many alias relation-
ships. For example, dev->plat_dev and pdev in Figure 1 should be
aliases and a null-pointer dereference at Line 1282 is triggered if the
argument pdev is NULL. However, the function s5p_mfc_probe
is implicitly called via a function-pointer field .probe of struct
s5p_mfs_driver in another OS module. Thus, pdev has an empty
points-to set, causing that pdev and dev->plat_dev are not treated
as aliases since their points-to sets have no intersection. Therefore,
the bug at Line 1282 cannot be found by points-to analysis based
approaches. To handle such alias relationships, points-to analysis
should record all the alias pairs generated by assignment state-
ments, causing high memory overhead and unscalability to large
codebases like OSes. (D2) An OS codebase is very large, containing
an excessive number of variables and code paths. Thus, tracking
variable typestates and checking path feasibility in OS code are
expensive, especially when detecting multiple types of bugs.

Recently, some path-sensitive approaches [31, 63, 64, 69] conduct
reachability analysis based on pre-computed value-flow graphs to
detect specific types of bugs (e.g., memory leaks). But their value-
flow graphs are built with points-to analysis, which can miss many
alias relationships when analyzing OS code (D1). In addition, they
perform only source-sink-based reachability analysis but not main-
taining typestates, so they are not generic to multiple bug types.
Basic idea and novel techniques. Path-sensitive typestate anal-
ysis is effective in detecting bugs in applications, but applying this
technique to OS code is challenging, because an OS typically has a
large codebase and complex alias relationships. To solve this prob-
lem, our basic idea is: (i1) identifying alias relationships based on
control-flow paths and access paths without using points-to infor-
mation, and (i2) using these alias relationships to reduce the costs of
typestate tracking and code-path validation. Based on this idea, we
propose three novel techniques:

For i1, we propose a path-based alias analysis to compute alias
relationships based on control-flow paths and access paths, without
using points-to information. This analysis is inter-procedural, flow-
sensitive and field-sensitive. For a control-flow path, this analysis
maintains an alias graph at each program point to represent alias
relationships in the path. Each alias graph is updated according to
the analyzed instructions and access paths of the involved variables.

For i2, we observe that merging aliased variables can significantly
reduce the number of typestates for bug detection and SMT con-
straints for path-feasibility validation, to boost analysis efficiency.

Path-based
alias analysis

Alias-aware
typestate-tracking

method

Alias
relationships

Possible bugs

Alias-aware
path-validation

method

Bug reports

Stage 1: code analysis Stage 2: bug filtering

OS code

Benefit

Benefit

Figure 2: PATA workflow.

Based on this observation, we propose an alias-aware typestate-
tracking method to efficiently detect multiple types of bugs, and an
alias-aware path-validation method to efficiently check code-path
feasibility of possible bugs. These two methods both benefit from
the alias relationships identified by our path-based alias analysis.
Differences from existing approaches. First, unlike existing
typestate-tracking methods [27, 29, 32, 77] that maintain one state
for each variable, our alias-aware typestate-tracking method main-
tains one typestate for all variables in the same alias set, and updates
this typestate when one of these aliased variables is handled by an
instruction related to the target bug type. In this way, our method
effectively reduces the amount of typestates that need to be tracked.

Second, unlike existing path-validation methods [31, 45, 64, 69]
that build an SMT symbol for each variable to solve path constraints,
our approach maps all variables in the same alias set to one SMT
symbol to reduce the amount of SMT constraints to be solved. In ad-
dition, to accurately handle data structures, our typestate-tracking
and path-validation methods are field-sensitive by distinguishing
fields of a data structure.

Finally, unlike existing generic static tools [8, 24, 25, 30, 55, 65]
for OS code, our alias-aware typestate-tracking method uses more
alias relationships to improve accuracy, and our alias-aware path-
validation method enables the path sensitivity of bug detection.

With the above three techniques, we develop PATA (Path-sensitive
and Alias-aware Typestate Analysis), a novel typestate analysis
framework to detect OS bugs. PATA first identifies alias relation-
ships without using points-to information and then uses these alias
relationships to reduce the costs of typestate tracking and code-
path validation. PATA has two stages shown in Figure 2. In Stage
1, PATA analyzes the OS code using our path-based alias analysis
and alias-aware typestate-tracking method. For each code path, our
alias analysis identifies alias sets as alias relationships; meanwhile,
our alias-aware typestate-tracking method uses the identified alias
relationships to analyze instructions in the code path to detect
possible bugs, without validating path feasibility. In Stage 2, our
path-validation method uses an SMT solver Z3 [85] to check the
path feasibility of each possible bug to filter out false alarms, with
the alias relationships identified in Stage 1. Finally, PATA produces
readable reports of the found bugs. We have implemented PATA
using LLVM [16] to automatically analyze OS code. Overall, we
make four main contributions:

• We first analyze the challenges of path-sensitive typestate
analysis for OS code, and then propose a new solution idea:
(i1) identifying alias relationships based on control-flow
paths and access paths without using points-to information,
and (i2) using these alias relationships to reduce the costs of
typestate tracking and code-path validation.

860

Path-Sensitive and Alias-Aware Typestate Analysis for Detecting OS Bugs ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

• Based on this idea, we propose three novel techniques: (1) a
path-based alias analysis to identify alias relationships based
on control-flow paths and access paths; (2) an alias-aware
typestate-tracking method to effectively detect different types
of bugs according to alias relationships; (3) an alias-aware
path-validation method to efficiently filter out false bugs with
an SMT solver and alias relationships. Note that typestate-
tracking and path-validation methods both benefit from the
alias relationships identified by path-based alias analysis.

• With the three techniques, we develop a novel path-sensitive
and alias-aware typestate analysis framework named PATA,
to effectively detect multiple types of OS bugs.

• We evaluate PATA on the Linux kernel and three popular IoT
OSes (Zephyr, RIOT and TencentOS-tiny) to detect three com-
mon types of bugs (null-pointer dereferences, uninitialized-
variable accesses and memory leaks). PATA finds 574 real
bugs (including 463 null-pointer dereferences, 90 uninitialized-
variable accesses and 21 memory leaks) with a false positive
rate of 28%. 206 of these bugs have been confirmed by OS
developers. We compare PATA to seven existing static ap-
proaches, and PATA finds many real bugs missed by them
with a lower false positive rate.

2 MOTIVATION
2.1 A Motivating Example
Figure 3 shows a real null-pointer dereference in the Zephyr Blue-
tooth subsystem. In the function friend_set, the pointer cfg is
first assigned with a data structure field model->user_data at Line
2709, and then it is compared to NULL in an if check at Line 2720, indi-
cating that cfg and model->user_data can be NULL. If so, the func-
tion send_friend_status is called with model at Line 2748 in error
handling code. In this function, the pointer cfg is assigned with the
variable model->user_data at Line 2684. As model->user_data
is NULL in this case, indicating that cfg is NULL, a null-pointer deref-
erence can occur when cfg->frnd is accessed at Line 2687.

FILE: zephyr-2.1.0/subsys/bluetooth/cfg_srv.c
2680. static void send_friend_status(type *model, ...) {

2684. struct bt_mesh_cfg_srv *cfg = model->user_data; // Alias

2687. net_buf_simple_add_u8(&msg, cfg->frnd); // Unsafe dereference!

2692. }

2705. static void friend_set(...) {

2709. struct bt_mesh_cfg_srv *cfg = model->user_data; // Alias

2720. if (!cfg) { // Pointer cfg can be NULL
2721. BT_WARN(...);
2722. goto send_status;
2723. }

2747. send_status:
2748. send_friend_status(model, ctx);
2749. }

Figure 3: A real null-pointer dereference in Zephyr.

This bug involves multiple alias relationships of data structure
fields across multiple functions, and it is triggered only when
model->user_data in the function friend_set is actually NULL.
Such requirement is difficult to satisfy by executing existing test
suites. In fact, this bug had existed for nearly 3 years since Zephyr
1.8.0 (released in Jun. 2017), and it was fixed by Zephyr developers
based on a report generated by our PATA framework.

2.2 Challenges
Static typestate analysis has three important challenges when de-
tecting bugs in OS code:
C1: Performing precise alias analysis. In OS code, due to the
heavy use of pointers and data structure fields (like Figure 3), the
alias relationships between variables can be very complex, espe-
cially when involving multiple code paths and function calls. More-
over, many OS functions do not have explicit caller functions in the
OS code. Thus, their pointer parameters can have incomplete points-
to information, making points-to analysis [1, 26, 35–37, 48, 49, 69, 82,
83] generally miss many alias relationships. Moreover, existing flow-
sensitive must-alias or may-alias analyses [7, 40, 42, 43, 79, 88, 89]
compute the intersection or union of alias sets at each joint points
of different control-flow paths, which can miss many real alias
relationships or introduce many false alias relationships for each
control-flow path. Therefore, it is important to improve the preci-
sion of identifying alias relationships in OS code.
C2: Detecting multiple types of bugs. An effective typestate
analysis framework should be applicable to multiple bug types
by tracking the typestates of each variable. But there are lots of
variables in the OS, and thus tracking the typestates of each variable
can be quite expensive. Therefore, it is important to efficiently track
typestates for multiple types of bugs.
C3: Dropping false bugs. On the one hand, without validating
path feasibility, static typestate analysis often reports many false
bugs. On the other hand, there are lots of code paths in the OS, and
thus using an SMT solver to validate all possible code paths can
be very costly. Therefore, it is important to check the feasibility of
code paths with low costs.

3 KEY TECHNIQUES
To address the above challenges, we propose three key techniques.
For C1, we propose a path-based alias analysis to identify alias
relationships based on control-flow paths and access paths, without
using points-to information. For C2, we propose an alias-aware
typestate-tracking method to effectively detect different types of
bugs according to alias relationships. For C3, we propose an alias-
aware path-validation method to efficiently filter out false bugs
with an SMT solver and alias relationships. We introduce them as
follows.

3.1 Path-Based Alias Analysis
In OS code, a variable can be aliased with different variables in
different control-flow paths. Thus, computing alias relationships
for each control-flow path can produce precise alias results, which
can effectively reduce false positives and negatives in bug detection.
Moreover, each OS is modularly-designed and application-driven,
causing that many functions do not have explicit caller functions in
the OS code, and thus points-to sets of their pointer-type parameters
can be incomplete. Based on these insights, we propose a path-
based alias analysis by extending alias graph [43], and identify
alias relationships according to control-flow paths and access paths,
without using points-to information.
Alias graph. It is an important data structure to represent alias
relationships in our alias analysis, so we introduce it first.

861

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu

Definition 1. An alias graph is a 2-tuple G = ⟨N , E⟩, where N
is a set of nodes, and each node n represents an alias class (i.e., a set
of variables Vars(n)) that points to one abstract object. E is a set of
labeled edges. Each edge is labeled with a data structure field or a
dereference operator “∗”, which represents how an abstract object is
accessed.

A variable residing in a node followed by a sequence of edge
labels form an access path [13, 43]. Access paths ending with the
same node on an alias graph form an alias set. Variables in the same
alias set are aliases. Variables residing in a single node is considered
as an access path with a length of 0.

Example 1. Figure 4(a) shows an alias graph containing four
nodes and three edges. Two edges are labeled with data-structure-field
accesses (i.e.,f and g), and the other edge is labeled with a pointer
dereference. Take node n3 as an example, there are four access paths
&x->f, &y->g, p and q to it, and the lengths of access paths p and q
are both 0. The alias sets based on the access path results are shown
in Figure 4(b).

y

x

p, q s

f

g

*

AliasSet(n1): {x}
AliasSet(n2): {y}
AliasSet(n3): {p, q, &x->f, &y->g}
AliasSet(n4): {s, *p, *q, *(&x->f), *(&y->g)}

n1

n2 n3 n4

(a) Alias graph (b) Alias sets

Figure 4: Example of alias graph.

Given a node n and an edge label l, there is only one outgoing
edge labeled with l from n. It indicates that a variable or an ex-
pression refers to only one abstract object per access path. Finally,
every program point will maintain a separate alias graph based on
a program path reaching this point. If Vars(n) of a node n changes
during alias analysis, the alias graph is also considered as updated.
Building and updating alias graph. The alias graph is built from
the entry of a function containing a set of isolated nodes, and each
of them represents a single variable in the program. Then, our alias
analysis updates the alias graph, according to the program instruc-
tions in form of the LLVM IR [50]. Our analysis focuses on four types
of instructions that can handle alias relationships: MOVE(v1 = v2),
STORE(∗v2 = v1), LOAD(v1 = ∗v2), and GEP(v1 = &v2->f). Note
that our alias analysis is field-sensitive to handle data structures
in OS code. Each access to a data structure field via LLVM’s getele-
mentptr instruction is handled through the GEP operation. The
rules for each operation to update an alias graph are shown in Fig-
ure 5. The notations used in pseudocodes are described in Table 1.
The four operations mentioned above are as follows:

HandleMOVE(v1 = v2 , G). After this operation, v1 is represented
by n2 not n1 (Lines 3-4), and thus v1 and v2 are represented by the
same node, which indicates they become aliases. The change made
on the variable sets of n1 and n2 indicates a changed alias graph.

HandleSTORE(∗v2 = v1, G). If n2 has an outgoing edge labeled
with ∗, it is dropped (Lines 8-9) and an edge labeled with ∗ from n2
to n1 is added (Line 11), so access paths ∗v2 and v1 reach the same
node n1. It indicates that after this operation, ∗v2 and v1 are aliases.

HandleLOAD(v1 = ∗v2 , G). If n2 has an outgoing edge labeled
with ∗, the target node of this edge represents v1 after this operation
(Lines 15-17). Otherwise, an edge labeled with ∗ from n2 to n1 (Line

Table 1: Notation table of pseudocodes.

ni ∈ 𝑁 A node in an alias graph G = ⟨N , E⟩.
ni

l→ nj ∈ E Adirected edge labeled in an alias graph. l is a field access or
a pointer dereference, representing how an abstract object
is accessed.

path A stack of instructions (program statements) per control-
flow path. It can also represent program point of the instruc-
tion on its top.

GetNode(v, N) The node representing variable v.
Vars(n) A set of variables that n represents.
GetArg(func, i) The ith formal parameter of func.
GetReturnValue(func) The return value of func.
UpdateAliasGraph(path) Alias-graph update under path.
TypestateTrack(path, G) Bug detection given the current alias graph G and the code

path path (This process will be introduced in Section 3.2).
Next(inst) The successive instructions of inst on CFG.

define: HandleGEP(𝑣1 = &𝑣2->𝑓, < 𝑁,𝐸 >)
22: 𝑛1 := GetNode(𝑣1, 𝑁);
23: 𝑛2 := GetNode(𝑣2, 𝑁);
24: if 𝑛2 → 𝑛𝑥 ∈ 𝐸 then
25: Vars(𝑛1) := Vars(𝑛1) - {𝑣1};
26: Vars(𝑛𝑥) := Vars(𝑛𝑥) ∪ {𝑣1};
27: else
28: 𝐸 := 𝐸 ∪ {𝑛2 → 𝑛1};
29: end if
30: return < 𝑁,𝐸 >;

define: HandleSTORE(*𝑣2 = 𝑣1, < 𝑁,𝐸 >)
6: 𝑛1 := GetNode(𝑣1, 𝑁);
7: 𝑛2 := GetNode(𝑣2, 𝑁);
8: if 𝑛2 → 𝑛𝑥 ∈ 𝐸 then
9: 𝐸 := 𝐸 − {𝑛2 → 𝑛𝑥};

10: end if
11: 𝐸 := 𝐸 ∪ {𝑛2 → 𝑛1};
12: return < 𝑁,𝐸 >;

define: HandleMOVE(𝑣1 = 𝑣2, < 𝑁,𝐸 >)
1: 𝑛1 := GetNode(𝑣1, 𝑁);
2: 𝑛2 := GetNode(𝑣2, 𝑁);
3: Vars(𝑛1) := Vars(𝑛1) – {𝑣1};
4: Vars(𝑛2) := Vars(𝑛2) ∪ {𝑣1};
5: return < 𝑁,𝐸 >;

𝑣1 𝑣1, 𝑣2

define: HandleLOAD(𝑣1 = *𝑣2 , < 𝑁,𝐸 >)
13: 𝑛1 := GetNode(𝑣1, 𝑁);
14: 𝑛2 := GetNode(𝑣2, 𝑁);
15: if 𝑛2 → 𝑛𝑥 ∈ 𝐸 then
16: Vars(𝑛1) := Vars(𝑛1) - 𝑣1 ;
17: Vars(𝑛𝑥) := Vars(𝑛𝑥) ∪ {𝑣1};
18: else
19: 𝐸 := 𝐸 ∪ {𝑛2 → 𝑛1};
20: end if
21: return < 𝑁,𝐸 >;

𝑣1

𝑣2*

𝑣1

𝑣2

𝑣1

𝑣2

𝑣1

(a) Rules for updating alias graph (b) Examples of updating

𝑛1

𝑛2 𝑛1

𝑛2𝑛2

𝑛1

𝑛2𝑛1

𝑛1

𝑛𝑥

𝑣2

𝑣1

𝑣2

𝑣1

𝑣2

𝑣2

𝑛𝑥

*

𝑛2 𝑛2

𝑛1𝑛𝑥 𝑛𝑥

𝑛1

𝑛2

𝑛1

𝑛2

* *

*

𝑣1

𝑣2

𝑣1

𝑛1 𝑣1

𝑣2

𝑣1

𝑣2

𝑣2

𝑛2 𝑛2

𝑛1𝑛𝑥 𝑛𝑥

𝑛1

𝑛2

𝑛1

𝑛2

𝑓 𝑓

𝑓

∗

∗

∗

∗

∗

𝑓

𝑓

Figure 5: Rules for updating alias graph.

19) is inserted. Thus, the access paths v1 and ∗v2 reach the same
node, which indicates that v1 and ∗v2 are aliases.

HandleGEP(v1 = &v2->f , G). This operation is similar to Han-
dleLOAD, except that the edge is labeled with a data structure field
f , instead of a dereference operator “∗”.
Path-based alias analysis. For each control-flow path, it builds
and updates alias graphs by analyzing each instruction in this path.
Figure 6 shows the pseudocodes of our alias analysis. For each
function without a caller function, the analysis builds an alias graph
with each node represents a single variable in the OS code (Lines 1-
6). Then, the analysis starts from the first instruction of the analyzed
function (Lines 9-11), and performs a depth-first traversal along
the control flow. The alias graphs are updated for each instruction
(Lines 23-29). Bug detection is performed by tracking typestates
of related alias set (Line 31). This process serves as an interface
named TypestateTrack, which will be introduced in Section 3.2. To

862

Path-Sensitive and Alias-Aware Typestate Analysis for Detecting OS Bugs ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

define: HandleINST(𝑝𝑎𝑡ℎ, 𝐺)
22: 𝑖𝑛𝑠𝑡 := 𝑝𝑎𝑡ℎ. 𝑡𝑜𝑝();
23: switch 𝑡𝑦𝑝𝑒𝑜𝑓(𝑖𝑛𝑠𝑡):
24: case 𝑣1 = 𝑣2: 𝐺′ := HandleMOVE(𝑖𝑛𝑠𝑡, 𝐺); break;
25: case *𝑣2 = 𝑣1: 𝐺′ := HandleSTORE(𝑖𝑛𝑠𝑡, 𝐺); break;
26: case 𝑣1 =*𝑣2: 𝐺′ := HandleLOAD(𝑖𝑛𝑠𝑡, 𝐺); break;
27: case 𝑣1 = &𝑣2->𝑓: 𝐺′ := HandleGEP(𝑖𝑛𝑠𝑡, 𝐺); break;
28: case 𝑣 = 𝑓𝑢𝑛𝑐 𝑣1, … , 𝑣𝑛 : 𝐺′ := HandleCALL(𝑖𝑛𝑠𝑡, 𝑝𝑎𝑡ℎ, 𝐺); break;
29: end switch
30: UpdateAliasGraph(𝑝𝑎𝑡ℎ) := 𝐺′;
31: TypestateTrack (𝑝𝑎𝑡ℎ, 𝐺′);
32: foreach 𝑖𝑛𝑠𝑡′ in Next(𝑖𝑛𝑠𝑡) do
33: if 𝑖𝑛𝑠𝑡′ not in 𝑝𝑎𝑡ℎ then
34: 𝑝𝑎𝑡ℎ. 𝑝𝑢𝑠ℎ 𝑖𝑛𝑠𝑡′ ;
35: HandleINST(𝑝𝑎𝑡ℎ, 𝐺′);
36: 𝑝𝑎𝑡ℎ. 𝑝𝑜𝑝();
37: end if
38: end foreach

define: HandleFUNC(𝑓𝑢𝑛𝑐, 𝑝𝑎𝑡ℎ, 𝐺)
9: 𝑖𝑛𝑠𝑡 := GetEntryOfFunc(𝑓𝑢𝑛𝑐);

10: 𝑝𝑎𝑡ℎ. 𝑝𝑢𝑠ℎ(𝑖𝑛𝑠𝑡);
11: HandleINST(𝑝𝑎𝑡ℎ, 𝐺);
define: HandleCALL(𝑣 = 𝑓𝑢𝑛𝑐(𝑣1, … , 𝑣𝑛), 𝑝𝑎𝑡ℎ, 𝐺)
12: foreach 𝑖 in 1. . 𝑛 do
13: 𝑎𝑟𝑔𝑖 := GetArg(𝑓𝑢𝑛𝑐, 𝑖);
14: 𝐺′ := HandleMOVE(𝑎𝑟𝑔𝑖 = 𝑣𝑖, 𝐺);
15: UpdateAliasGraph(𝑝𝑎𝑡ℎ) := 𝐺′;
16: 𝐺 := 𝐺′;
17: end foreach
18: HandleFUNC(𝑓𝑢𝑛𝑐, 𝑝𝑎𝑡ℎ, 𝐺);
19: 𝑟𝑒𝑡 := GetReturnValue(𝑓𝑢𝑛𝑐);
20: 𝐺′ := HandleMOVE(𝑣 = 𝑟𝑒𝑡, 𝐺);
21: return 𝐺′;

define: AnalyzeCode()
1: foreach 𝑓𝑢𝑛𝑐 in OS code without a caller function do
2: 𝐺 := ∅;
3: 𝑝𝑎𝑡ℎ := ∅;
4: foreach variable in the OS code do
5: insert a new node representing it into G;
6: end foreach
7: HandleFUNC(𝑓𝑢𝑛𝑐, 𝑝𝑎𝑡ℎ, 𝐺);
8: end foreach

Figure 6: Pseudocodes of our path-based alias analysis.

avoid repeatedly handling loops and recursive calls, if a successive
instruction is already handled in the path (with each loop and
recursion unrolled only once), the analysis does not handle it again
(Lines 32-38).

A function call is regarded as several MOVE operations between
formal parameters and corresponding actual parameters (Lines 12-
17), because they are aliases after passing parameters. Similarly, the
return instruction of a callee function is also regarded as a MOVE
operation (Lines 19-20).

Example 2. We illustrate our path-based alias analysis with the
simplified code in Figure 3, and present its alias graph for some
important program points in Figure 7 (isolated nodes are omitted).
Each node represents a set of aliased variables, and the nodes with
bold edge are related to the branch condition at Line 4. We exploit
func:v to represent the variable v in the function func. Through
a GEP(foo:r=&foo:p->s) and LOAD(foo:t=*foo:r) operations,
our analysis gets alias graph at Line 3 and infers that foo:t and
*(&foo:p->s) are aliases. For the branch statement at Line 4, our
analysis copies the alias graph into two branches. For example in the
path (𝐿𝑖𝑛𝑒2, 𝐿𝑖𝑛𝑒3, 𝐿𝑖𝑛𝑒4, 𝐿𝑖𝑛𝑒5, 𝐿𝑖𝑛𝑒10, 𝐿𝑖𝑛𝑒11, 𝐿𝑖𝑛𝑒12), the function
bar is called at Line 5, and our analysis uses a MOVE(bar:p=foo:p)
operation to pass related parameters. With a GEP(bar:r=&bar:p->s)
and a LOAD(bar:t=*bar:r) operations, our analysis gets the alias
graph at Line 11; and through a LOAD(bar:a=*bar:t) operation,
our analysis gets the alias graph at Line 12.

Referring to existing static approaches [5, 52, 64], to avoid spend-
ing too much time on analyzing loops and recursive calls, our alias

foo:p foo:r foo:t
s *

Line 5

Line 11

Line 7

Line 3

Line 12

Line 4Line 4

COPY

* *foo:p foo:r foo:t foo:a
s

foo:p foo:r foo:t
s *

LOAD

foo:p
bar:p

foo:r foo:t

foo:p
bar:p

foo:r
bar:r

foo:t
bar:t

*

*

*

s

s

*foo:p
bar:p

foo:r
bar:r

foo:t
bar:t

bar:a
s

foo:p foo:r foo:t
s *

1. foo(p) {
2. r = &(p->s);
3. t = *r;
4. if (!t)
5. bar(p);
6. else
7. a = *t;
8. }

9. bar(p) {
10. r = &(p->s);
11. t = *r;
12. a = *t;
13. }

Example source code

MOVE

GEP & LOAD

LOAD

Figure 7: Example of illustrating path-based alias analysis.

analysis unrolls each loop and recursive call just once (Lines 32-38),
which can miss some alias relationships in the two cases, causing
soundness loss of bug detection.

3.2 Alias-Aware Typestate-Tracking Method
Static typestate analysis defines some “typestates” to describe pos-
sible states that each variable can reach, and then tracks typestate
transitions according to related operations to detect bugs. But there
are lots of variables and code paths in OS code, so tracking types-
tates for each variable and synchronizing typestates among aliased
variables are quite expensive, especially when detecting multiple
types of bugs. We consider merging aliased variables that may refer
to the samememory location, so that their typestates can be merged
to reduce analysis costs. Based on this consideration, we propose
an alias-aware typestate-tracking method using the alias relation-
ships produced by our path-based alias analysis, to detect multiple
types of OS bugs. This method is represented as TypestateTrack in
Figure 6.

Our method is field-sensitive, by regarding each field of a data
structure as a separate variable in typestate tracking. It also con-
siders alias relationships involving data structure fields, due to the
field sensitivity of our alias analysis. Moreover, our method is inter-
procedural and flow-sensitive, but neglects the feasibility of code
paths, and thus it can report some false bugs. To filter out these false
bugs, we use a path-validation method, which will be introduced
in Section 3.3.

A typestate property for each variable can be specified as a finite
state machine (FSM) [32].

Definition 2. An FSM for detecting a specific type of bug is
described as FSMtype =

〈∑
, S, S0, 𝛿, Stype

〉
, where:

• ∑
is the set of instructions that change the state.

• S is the set of all possible states.
• S0 is the initial state.
• 𝛿 is a set of state-transition functions that map the present
state and an instruction to a new state.

• Stype is the final state which means a possible bug is detected
by TypestateTrack.

For each code path, all aliased variables identified by our alias
analysis share the same state in the FSM.

863

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu

Table 2: FSMs of null-pointer dereferences (NPD), uninitialized-variable accesses (UVA) and memory leaks (ML).

FSMNPD = ⟨∑, S, S0 , 𝛿, SNPD ⟩ FSMUVA = ⟨∑, S, S0 , 𝛿, SUVA ⟩ FSMML = ⟨∑, S, S0 , 𝛿, SML ⟩
S = {S0 , SNON , SN , SNPD } S = {S0 , SUI , SI , SUVA } S = {S0 , SNF , SF , SML }
SNON . The alias set is non-NULL.
SN . The alias set is NULL.

SUI . A local variable or a heap object is uninitialized.
SI . A local variable or a heap object is initialized.

SNF . A heap object is not freed.
SF . A heap object is freed.∑

= {ass_null, br_null, br_nonnull, deref } ∑
= {ass_const, load, alloc, use} ∑

= {malloc, free, ret }
ass_null. Assign NULL to a pointer.
br_null. Execute a branch where the pointer is NULL.
br_nonnull. Execute a branch where the pointer is non-NULL.
deref . Dereference a pointer.

ass_const. Assign a constant to a local variable or a heap object.
load. Load a value from an uninitialized heap object or an uninitialized data
structure filed.
alloc. Load a local variable.
use. Access a variable or a heap object.

malloc. Allocate a heap object.
free. Free a heap object.
ret. Execute a return instruction.

deref

br_nonnull deref
*

SNON

deref /
br_nonnull

ass_null /
br_null

br_nonnull
ass_null /
br_null

ass_null / br_null

SNS0 SNPD

use

ass_const use
*

SI

*
ass_const

load / alloc

SUIS0 SUVA

load / alloc

ret
*

SF
free

malloc

SNFS0 SML

retret

Definition 3. Function mapping an alias set AS to a correspond-
ing state S in the FSM is defined as Sm : AS→ S, whereAS represents
the alias sets in the code path.

Our typestate-tracking method and alias analysis are performed
at the same time (Line 31 in Figure 6). For each instruction in the
code path, after the alias graph G is updated, our method first finds
the alias set AS of the variable handled by the analyzed instruc-
tion, with G, and gets the current state Scurr = Sm (AS). Then, our
method changes the state of related alias set, according to Scurr and
the analyzed instruction. For different types of bugs, their FSMs
can be separately maintained at the same time during typestate
tracking.

At present, we have implemented three FSMs to detect null-
pointer dereferences (NPD), uninitialized-variable accesses (UVA)
and memory leaks (ML), respectively, because these three types of
bugs are common and dangerous in OSes. The definitions of these
FSMs are shown in Table 2. We use state-transition diagram to
illustrate each state-transition function 𝛿 and use “∗” to represent
any input to FSM.

Example 3. We use an example in Figure 8 to illustrate how to
simplify typestate tracking with alias relationships. Without alias
relationships, to detect null-pointer dereference in Figure 7, typestate
analysis maintains states for foo:t and bar:t separately, and trans-
fers its state to NULL when analyzing the variable bar:t at Line 11,
because the state of its aliased variable foo:t is NULL. The related
state transitions are shown in Figure 8(a). Instead, with alias rela-
tionships, our method merges states of aliased variables to simplify
typestate tracking. In Figure 8, our method maintains just one state
for the alias set of foo:t and bar:t, because these variables become
aliases and share the same state. The related alias-aware state transi-
tions are shown in Figure 8(b). Comparing Figure 8(a) and Figure 8(b),
we find that our method can effectively simplify state transitions and
thus reduce the cost of typestate tracking, by using alias relationships.

Due to unsoundness of our alias analysis when handling loops
and recursive calls, our typestate-tracking method may miss the
opportunity to merge the states of some aliased variables. More-
over, without validating code-path feasibility in alias analysis, our
typestate-tracking method may mistakenly merge the states of
two variables referring to different memory locations, which can
introduce inaccuracy of bug detection.

(b) Alias-aware typestate analysis

(a) Traditional typestate analysis

SNS0 SNPD
foo:t
bar:t

br_null
(Line 4)

SNS0foo:t

deref
(Line 12)

SNS0 SNPDbar:t

sync (Line 11)

br_null
(Line 4)

deref
(Line 12)

Figure 8: Bug-related state transitions in Figure 7.

3.3 Alias-Aware Path-Validation Method
On the one hand, we observe that the code paths of possible bugs
often occupy a small proportion of all code paths in the whole OS
code, and thus validating all code paths are redundant in bug detec-
tion. On the other hand, we observe that all aliased variables should
satisfy the same constraints in a given code path, and thus these
variables can be represented by the same symbol in the SMT solver,
to reduce the cost of path constraint solving. Based on the two ob-
servations, we propose an alias-aware path-validation method using
the alias relationships produced by our path-based alias analysis, to
efficiently filter out false bugs reported by our typestate-tracking
method. Besides, this method is field-sensitive, by regarding each
field of a data structure as a separate variable in path validation. Due
to the field sensitivity of our alias analysis, this method considers
alias relationships involving data structure fields in path validation.

In our method, constraints in path validation are simplified by
mapping an alias set not a variable to one symbol in an SMT solver.
During path validation, if the symbol does not exist, our method
creates a new symbol for the alias set.

Definition 4. Function mapping an alias set AS to a symbol X
in an SMT solver is defined as Xm : AS→ X, where AS are alias sets
in the code path, and X are SMT symbols.

To validate the code-path feasibility of each possible bug, our
method translates the instructions in its code path to SMT con-
straints, and then uses the SMT solver Z3 to compute whether
these constraints can be satisfied. Specifically, for each instruction,
our method first gets the alias set of the handled variable, then finds
the symbol of this alias set, and finally builds constraints for this
symbol with instruction information.

Definition 5. Function to get the symbol X for the variable v is
defined as R(v) = Xm (AS) where v is in the alias set AS.

Specifically, when building constraints, we formulate each in-
struction in the following tiny source language:

864

Path-Sensitive and Alias-Aware Typestate Analysis for Detecting OS Bugs ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Table 3: Translation rules of expressions and instructions.

Source SMT constraints
(a) Translation of L-values
Tvar (v) where v ∈ ⟨var ⟩ R (v)

(b) Translation of expressions
Texp (c) where c ∈ ⟨const ⟩ c
Texp (var) where v ∈ ⟨var ⟩ Tvar (v)
Texp

(
e1opbe2

)
Texp (e1) opbTexp (e2)

Texp (opue1) opuTexp (e1)

(c) Translation of statements
Tstm (var := e) Tvar (var) == Texp (e)
Tstm (brt (e)) Texp (e) == 1
Tstm (brf (e)) Texp (e) == 0

• ⟨exp⟩ ::= ⟨const⟩ | ⟨var⟩ | ⟨exp⟩1 opb ⟨exp⟩2 |opu ⟨exp⟩
• ⟨stm⟩ ::= ⟨var⟩ = ⟨exp⟩ |brt (e) |brf (e)

In the source language, expr represents an expression like a+1;
const represents a constant value; var represents a variable; opb
represents a binary operator; opu represents a unary operator; stm
represents a statement such as v=a+1; brt (e) represents a condition
to execute a control-flow branch when e is evaluated to be true (e.g.,
if(e)); brf (e) represents the condition when e is evaluated false.
Translation rules from a source language to SMT constraints are
shown in Table 3.

Code:
1. void func(p, q) {
2. if (q == NULL)
3. p->f = 0;
4. t = p;
5.
6. if (t->f != 0)
7. *p = *q;
8. }

Implicit constraints:
R'(p)==R'(q) R'(p->f)==R'(q->f)
R'(p)==R'(t) R'(p->f)==R'(t->f)
R'(q)==R'(t) R'(q->f)==R'(t->f)
Explicit constraints:
R'(q)==NULL \\ Line 2
R'(p->f)==0 \\ Line 3
R'(t)==R'(p) \\ Line 4
R'(t->f)!=0 \\ Line 6

Alias sets at Line 6:
{t, p}, {t->f, p->f}, {q}

Final constraints:
R(q)==NULL \\ Line 2
R(p->f)==0 \\ Line 3
R(t->f)!=0 \\ Line 6

(a) Source code (b) Original constraints (c) Simplified constraints





Figure 9: Example of simplifying SMT constraints.

If the conjunction of these SMT constraints is satisfiable, the
validated code path is considered to be feasible, and thus the corre-
sponding possible bug is identified to be real.

Example 4. We illustrate how to use alias relationships to sim-
plify SMT constraints, using an example in Figure 9 (type infor-
mation is omitted). To validate the code path of a possible null-
pointer dereference (𝐿𝑖𝑛𝑒2, 𝐿𝑖𝑛𝑒3, 𝐿𝑖𝑛𝑒4, 𝐿𝑖𝑛𝑒6, 𝐿𝑖𝑛𝑒7) in Figure 9(a),
we need to translate the instructions in the code path to SMT con-
straints. Suppose the function R’() maps a variable to an SMT sym-
bol without considering alias relationships, for each assignment like
p1=p2, we need to add an explicit constraint R’(p1)==R’(p2). If p1
and p2 are data structure pointers of the same type, each of their
field f should be equal. Thus, we need to add an implicit constraint
R’(p1)==R’(p2)→R’(p1->f)==R’(p2->f), where → means im-
plication. Figure 9(b) shows the constraints without considering alias
relationships. Instead, by considering alias relationships, if two vari-
ables p1 and p2 becomes aliases, our method maps them to the same
SMT symbol (Definition 5), causing that R(p1)==R(p2) is natu-
rally satisfied, and thus this explicit constraint can be dropped. If
two variables p1 and p2 become aliases, their fields like p1->f and
p2->f can be also inferred to be aliases, causing that these fields
are mapped to the same SMT symbol and implicit constraints like
R(p1)==R(p2)→R(p1->f)==R(p2->f) are naturally satisfied, and
thus these implicit constraints can be also dropped. Figure 9(c) shows

the alias sets used for constraint simplification and the simplified
constraints. In this example, R(p->f)==0 and R(t->f)!=0 cannot be
satisfied at the same time, so this possible bug is identified to be false.

Due to unsoundness of our alias analysis when handling loops
and recursive calls, our method may lose some constraints about
multiple executions of loop body and recursive function, and thus
can cause false positives in bug detection.

4 FRAMEWORK
Based on the three key techniques in Section 3, we develop a novel
path-sensitive and alias-aware typestate analysis framework named
PATA, to effectively detect multiple types of OS bugs.We implement
PATA using Clang 9.0 [16]. Figure 10 shows the architecture of
PATA, which has three phases:

PATA

Code AnalyzerClang Compiler Bug Filter

LLVM
Bytecode

Possible Bugs

Information
Collector

Function
Information

Bug Reports

OS source
code

Figure 10: PATA architecture.

P1: Code compilation and code-information collection. The
Clang compiler compiles the OS source code into LLVM bytecode,
and then the information collector scans each LLVM bytecode file to
record function information (including the position of each function
definition and function name, etc.) in a database. Such information
is used in subsequent code analysis for inter-procedural analysis
across source files.
P2: Code analysis. The code analyzer uses our path-based alias
analysis and alias-aware typestate-tracking method to analyze
LLVM bytecode files, without validating path feasibility. The anal-
ysis starts at the entry of each function without explicit callers,
and handles each code path in top-down analysis. When a function
returns, the analysis combines the information of its code paths
to mitigate path explosion. Finally, the analysis produces possible
bugs with their code paths.
P3: Bug filtering. For a given real bug, there may be multiple code
paths between its two problematic instructions, and thus many re-
peated bugs can be reported. To drop repeated bugs, for a new
possible bug, the bug filter checks whether its problematic instruc-
tions are identical to those of any already detected bug. If so, this
possible bug is considered to be repeated and thus dropped. Then,
the bug filter uses our alias-aware path-validation method to drop
false bugs.
False positives. PATA can still report false bugs due to the limita-
tions of current implementation. For example, PATA unrolls each
loop and recursive call just once, so it can report false bugs in-
volving multiple executions of loop body and recursive function.
Moreover, PATA does not handle non-constant array indexes, data
dependence across functions with a variable number of parameters
or concurrency of memory accesses, so it can report false bugs
related to these aspects.

865

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu

5 EVALUATION
We evaluate PATA on the Linux kernel and three open-source IoT
OSes (Zephyr [86], RIOT [59] and TencentOS-tiny [73]). Table 4
shows their information, and source code lines are counted by
CLOC [17]. For the Linux kernel, we use the kernel configuration
allyesconfig to enable all kernel code for the x86-64 architecture. For
each IoT OS, many source files are architecture-specific, so we have
tried our best to compile as many source files as possible, by tuning
available compilation configurations. We run the evaluation on a
regular x86-64 desktop with eight processors and 16GB memory.

Table 4: Information about the four checked OSes.

OS Version Source files (*.c) LOC
Linux kernel 5.6 28,260 14.2M
Zephyr 2.1.0 1,669 383K
RIOT 2020.04 4,402 1,575K
TencentOS-tiny Commit 23313e 1,497 572K

5.1 Bug Detection
We run the three checkers implemented in Section 3.2 to detect null-
pointer dereferences (NPD), uninitialized-variable accesses (UVA)
and memory leaks (ML). Each checker is implemented with just
100-200 lines of code. We manually check all the bugs found by
PATA. Table 5 shows the results.
Code analysis. PATA in total analyzes 10.3M lines of code in 18.4
K source files. The remaining 6.5M lines of code in 17.4K source
files are not analyzed, as they are not enabled by the compilation
configurations used by us.We believe that PATA can findmore bugs,
if these source files can be compiled with proper configurations.
Moreover, compared to alias-unaware typestate tracking and path
validation, PATA drops 49.8% typestates and 87.3% SMT constraints,
which effectively reduces the complexity and costs of static analysis.
Finally, PATA drops 54.7 K false bugs using our path-validation
method, which effectively improves bug-detection accuracy.
Found bugs. PATA reports 797 bugs, and a PhD student spent 12
hours on checking the bug reports. This time usage is smaller than
what we expected, as some reported bugs have similar root causes or
patterns and they can be checked together. Finally, we identify that
574 of them are real bugs, including 463 null-pointer dereferences,
90 uninitialized-variable accesses and 21 memory leaks. Thus, the
overall false positive rate of bug detection is 28%. In our experience,
reporting too many bugs within a short time is not recommended
by the Linux community. Thus, similar to existing works [4, 5], we
randomly selected 200 real bugs in Linux kernel and all the 120
real bugs in IoT OSes, and sent them to OS developers. 206 of them
(138 in Linux, 23 in Zephyr, 23 in RIOT and 22 in TencentOS-tiny)
have been confirmed. We are still waiting for the response of the
remaining bugs. Besides, 13 of our patches that fix 46 bugs have
been applied in the OS code, and the 160 remaining confirmed bugs
have been fixed by OS developers according to our bug reports.
Bug distribution. We classify the 574 real bugs found by PATA, by
the category of the OS part containing the bug. Figure 11 shows the
bug distribution. We find that drivers have 75% of the real bugs in
the Linux kernel, and third-party modules have 68% of the real bugs
in the three IoT OSes. Indeed, many Linux drivers and all third-party
IoT OS modules are developed by third-party organizations not the

ThirdParty:
68%

Subsystem:
25%

Others:
7%

Drivers:
75%

Others:
9%

(a) Linux (b) IoT OSes

Figure 11: Distribution of the found bugs.

OS community, and their code quality are generally worse than that
of other OS parts [20]. In addition, we find that network modules
and filesystems have 16% of the real bugs in the Linux kernel, and
subsystem modules (including network stacks, bluetooth modules,
etc) have 25% of the real bugs in the three IoT OSes. As these OS
parts are commonly-used and security-critical, their bugs are often
dangerous and received serious attention by OS developers after
we reported them.

5.2 False Positives
PATA still reports 223 false bugs in the four OSes, and these false
bugs are introduced for three main reasons:

First, PATA is array-insensitive and thus inaccurate in handling
array elements with non-constant array indexes. For example, PATA
identifies that two array elements array[i+1] and array[j] are
different, even if the statement “j=i+1” is placed before the accesses
to them, because their access paths in our alias analysis are different.

Second, although PATA uses Z3 to validate path feasibility, it still
errs in handling some complex cases, such as complex arithmetic
conditions and data dependence across multiple functions. PATA
also fails to check loop conditions for multiple iterations and thus
can report false bugs involving loops.

Finally, PATA neglects the concurrency of memory accesses.
For example, the initialization and access to a variable can be re-
spectively performed in two concurrently-executed functions with
synchronization, which guarantees that the initialization is always
performed before the access. But when analyzing the access, PATA
may fail to find any initialization to this variable before the ac-
cess due to thread unawareness, and thus it can report a false
uninitialized-variable access.

5.3 Case Studies of Bugs Found by PATA
Figure 12 shows several real bugs found by PATA, and these bugs
have been confirmed and fixed by OS developers.

Null-pointer dereferences in Linux MCDE driver. In Fig-
ure 12(a), the variable d->mdsi is compared with NULL at Line 1035
in the function mcde_dsi_bind, namely this variable can be NULL.
Then, the function mcde_dsi_start is called at Line 1064. In this
function, d->mdsi is dereferenced at Lines 724, 752, 778 and 787,
which can cause null-pointer dereferences. To fix these bugs, the de-
veloper drops the call to mcde_dsi_start when d->mdsi is NULL.

Null-pointer dereference in Zephyr IP network stack. In
Figure 12(b), the variable dst_addr is compared with NULL at Line
1361 in the function context_sendto, namely this variable can
be NULL. At Line 1361, when dst_addr is NULL and msghdr is not

866

Path-Sensitive and Alias-Aware Typestate Analysis for Detecting OS Bugs ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Table 5: Analysis results of the four OSes.

Description Linux Zephyr RIOT TencentOS-tiny Total

Code analysis

Source files (analyzed/all) 16,237/28,260 634/1,669 1,134/4,402 398/1,497 18.4K/35.8K
Source code lines (analyzed/all) 9,539K/14,223K 254K/383K 374K/1,575K 180K/572K 10.3M/16.8M
Typestates (alias-aware/unaware) 22,016M/43,981M 249M/437M 699M/1,261M 51M/81M 23.0G/45.8G
SMT constraints (alias-aware/unaware) 238M/1,903M 1,302K/3,926K 3,685K/11,014K 1,050K/2,071K 244M/1,920M

Bug detection

Dropped repeated bugs 18,354K 220K 143K 111K 18.8M
Dropped false bugs 48,472 3,884 1,514 873 54.7K
Found bugs (NPD/UVA/ML) 627 (508/102/17) 30 (27/2/1) 106 (98/5/3) 34 (14/13/7) 797 (647/122/28)
Real bugs (NPD/UVA/ML) 454 (365/76/13) 24 (24/0/0) 67 (62/2/3) 29 (12/12/5) 574 (463/90/21)
Confirmed bugs (NPD/UVA/ML) 138 (94/31/13) 23 (23/0/0) 23 (20/0/3) 22 (5/12/5) 206 (142/43/21)

Time usage 33h01m 44m 82m 22m 35h29m

FILE: TencentOS-tiny/kernel/core/include/tos_sys.h
182. inline int knl_object_verify(TYPE *knl_obj, ...) {
183. return knl_obj->type == type; // Unsafe access!
184. }

FILE: zephyr-2.1.0/subsys/net/ip/net_context.c

1335. static int context_sendto(...) {

1361. if (!dst_addr && !msghdr && ...) // dst_addr can be NULL
1362. return -EDESTADDRREQ;

1421. ll_addr = (struct sockaddr_ll *)dst_addr; // Alias

1432. if (ll_addr->sll_ifindex < 0) // Unsafe dereference!

1629. }

(b) Null-pointer dereference in Zephyr

FILE: TencentOS-tiny/osal/posix/pthread.c
499. __API__ int pthread_create(...) {

554. stackaddr = tos_mmheap_alloc(...); // Uninitialized

564. the_ctl = (pthread_ctl_t *)stackaddr; // Alias

585. kerr = tos_task_create(&the_ctl->ktask);

629. }

(d) Uninitialized-variable access in TencentOS-tiny

FILE: TencentOS-tiny/kernel/core/tos_task.c
82. __API__ k_err_t tos_task_create(TYPE *task, ...) {

100. TOS_OBJ_TEST_RC(task, ...);

150. }

FILE: TencentOS-tiny/kernel/core/include/tos_klib.h
84. #define TOS_OBJ_TEST_RC(obj, ...) \
85 __MACRO_BEGIN \
86. if (knl_object_verify(&obj->knl_obj, ...)

89. __MACRO_END \

FILE: RIOT-2020.04/cpu/native/syscall.c

267. char *make_message(...) {

272. if ((message = malloc(size)) == NULL) // Memory allocation
273. return NULL;

277. n = vsnprintf(...);
278. if (n < 0)
279. return NULL; // No free!

291. }

(c) Memory leak in RIOT(a) Null-pointer dereferences in Linux

FILE: linux-5.6/drivers/gpu/drm/mcde/mcde_dsi.c

710. static void mcde_dsi_start(struct mcde_dsi *d) {

724. if (d->mdsi->mode_flags & ...) // Unsafe dereference!
725. val |= DSI_MCTL_HOST_EOT_GEN;

752. if (d->mdsi->lanes == 2) // Unsafe dereference!
753. val |= DSI_MCTL_PHY_CTL_LANE2_EN;

778. if (d->mdsi->lanes == 2) // Unsafe dereference!
779. val |= DSI_MCTL_MAIN_EN_DAT2_EN;

787. if (d->mdsi->lanes == 2) // Unsafe dereference!
788. val |= DSI_MCTL_MAIN_STS_DAT2_READY;

813. }

1018. static int mcde_dsi_bind(...) {

1035. if (d->mdsi) // d->mdsi can be NULL
1036. mcde_dsi_attach_to_mcde(d);

1064. mcde_dsi_start(d);

1111. dev_info(dev, "initialized MCDE DSI bridge\n");
1112. return 0;
1113. }

Figure 12: Example bugs found by PATA.

NULL, the function does not return at Line 1362 and continues exe-
cution. Then, dst_addr is assigned to ll_addr at Line 1421, and
thus ll_addr can be NULL. After that, ll_addr is dereferenced at
Line 1432, causing a null-pointer dereference. To fix this bug, the de-
veloper refactored the source code in the function context_sendto
to handle the case that dst_addr is NULL.

Memory leak in RIOT syscall-handling component. In Fig-
ure 12(c), the variable message points to a memory area allocated
by calling malloc at Line 272 in the function make_message. Then,
it returns due to an exception at Line 279, without releasing the
memory area pointed by message, causing a memory leak. To fix
this bug, the developer calls free(message) before the return state-
ment at Line 279, to free the allocated memory in error handling.

Uninitialized-variable access in TencentOS-tiny thread li-
brary. In Figure 12(d), the variable stackaddr points to an unini-
tialized memory area allocated by tos_mmheap_alloc at Line 554
in the function pthread_create. After that, stackaddr is assigned
to the_ctl at Line 564, and the function tos_task_create is
called with &the_ctl->ktask at Line 585. Finally, via two function
calls and a macro, the variable (the_ctl->ktask).knl_obj.type
is accessed at Line 183 in the function knl_object_verify. But
the memory area pointed by the_ctl is uninitialized, causing an
uninitialized-variable access here. To fix this bug, the developer
calls memset to initialize the memory area pointed by stackaddr
after calling tos_mmheap_alloc.

5.4 Sensitivity Analysis
The core idea of PATA is to exploit alias relationships to enhance
typestate analysis for OS code. To validate the value of this idea, we

Table 6: Sensitivity analysis results in Linux.

Description PATA-NA PATA
Found Bugs (NPD/UVA/ML) 620 (424/108/88) 627 (508/102/17)
Real Bugs (NPD/UVA/ML) 194 (168/15/11) 454 (365/76/13)
Time usage 8h19m 33h01m

Table 7: Bugs found by three additional checkers in Linux.

Bug type Double lock/unlock Array index underflow Division by zero Total
Found bugs 22 23 7 52
Real bugs 18 20 5 43

implement a non-alias version of PATA, named PATA-NA, which
does not compute alias relationships in typestate analysis. Table 6
shows the results in Linux.

PATA-NA finds 620 bugs in Linux and 194 of them are real,
achieving a false positive rate of 69% that is higher than PATA.
These 194 real bugs are all found by PATA, and PATA additionally
finds 260 bugs missed by PATA-NA. Moreover, PATA spends less
time than PATA-NA, by merging typestates and SMT constraints
according to alias relationships. The results indicate that using alias
relationships in typestate analysis indeed improves the accuracy
and efficiency of bug detection.

5.5 Generality to Other Bug Types
Benefiting from typestate analysis, PATA can conveniently de-
tect different types of OS bugs with different checkers. To vali-
date such generality, we also implement three additional check-
ers to detect other three common types of OS bugs, including
double-lock/unlock, array-index-underflow and division-by-zero

867

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu

bugs. Each of these checkers is implemented according to its bug-
related FSM and using just 100-200 lines of code, like the three
checkers used in Section 5.1. Table 7 shows the results of these
additional checkers in Linux.

With these additional checkers, PATA additionally finds 52 bugs,
and we identify that 43 of them are real bugs, including 18 double-
lock/unlock, 20 underflow and 5 division-by-zero bugs. The results
indicate the generality of PATA to different types of OS bugs.

6 COMPARISON TO EXISTING APPROACHES
We experimentally compare PATA to seven state-of-the-art static
analysis approaches, including Cppcheck [24] (v2.3), Coccinelle [55]
(v1.0.8), Smatch (v0.5.0) [65], CSA (checker-279) [25], Facebook
Infer [39] (v1.1.0), Saber [69] (v2.1) and SVF [67] (v2.1). Cppcheck,
Coccinelle, Smatch, CSA and Infer are open-source static analysis
tools that can detect multiple types of bugs; Saber is a path-sensitive
static analysis tool to detect memory leaks; SVF is a static value-
flow analysis framework that contains a flow-sensitive and inter-
procedural points-to analysis, which can be used to detect bugs.

For Cppcheck, Smatch, CSA and Infer, we use them to detect the
three types of bugs detected by PATA in Section 5.1; For Coccinelle,
we just use its existing semantic patches [61] to detect null-pointer
dereferences, as we do not find any existing semantic patch to detect
uninitialized-variable accesses or memory leaks; For Saber, we use
it to detect memory leaks. For SVF, we replace the path-based alias
analysis with the SVF’s flow-sensitive points-to analysis in PATA,
to implement a new tool named SVF-Null to detect null-pointer
dereferences. To evaluate Saber and SVF-Null, we use WLLVM [76]
to build the whole Linux kernel into a single LLVM bytecode file
as SVF wiki [70] suggests, and use SVF-Null to perform analysis
on the bytecode file. But we fail to build the three IoT OSes using
WLLVM due to many compilation errors, and thus we use Saber
and SVF-Null to analyze bytecode files generated by Clang for
each single source file. Note that Smatch and CSA report many
compilation errors when checking IoT OSes, as their compilation
scripts are unsuitable to the Makefiles of IoT OSes. Similarly, Infer
reports many compilation errors when checking the Linux kernel.
Besides, because the whole Linux kernel has lots of pointers, Saber
and SVF consume too much memory when checking its code, and
finally abort due to insufficient memory. Similarly, several recent
works [31, 64] also find that Saber and SVF can consume too much
memory or time when checking large-scale programs. For the above
reasons, we use Smatch and CSA to just check the Linux kernel, and
use Infer, Saber and SVF to just check the three IoT OSes. Table 8
shows the detailed comparison results of these approaches:

(1) 27 real bugs found by Cppcheck, 6 real bugs found by Coc-
cinelle, 110 real bugs found by Smatch, 196 real bugs found by CSA,
15 real bugs found by Infer, 2 bugs found by Saber and 4 bugs found
by SVF-Null are also found by PATA. But 25 real bugs found by
Cppcheck and 2 real bugs found by Coccinelle are missed by PATA.
Indeed, the source files containing the 27 missed bugs are not com-
piled with the compilation configurations used in our evaluation,
so these source files are not checked by PATA; while Cppcheck and
Coccinelle check source files without code compilation. We believe
if these source files can be compiled with proper configurations,
the 27 missed bugs can be also found by PATA.

(2) PATA finds 328 real bugs missed by the seven tools (note
that some bugs found by these tools are identical) with a lower
false positive rate. Due to lacking inter-procedural analysis or alias
analysis, Cppcheck, Coccinelle and Smatch miss complex bugs
involving multiple functions or alias relationships. Moreover, the
three tools do not validate code path feasibility, and thus they report
many false bugs caused by infeasible code paths. Though CSA, Infer,
Saber and SVF-Null compute points-to information to handle alias
relationships, their points-to analyses fail to model heap objects for
pointer parameters of module interface functions and miss complex
alias relationships in specific code paths, and thus these tools miss
many real bugs related to pointer parameters and report many false
bugs involving complex alias relationships. In addition, Infer and
Saber fail to handle some complex path conditions especially those
related to return values of callee functions, and thus they also report
some false bugs.

(3) PATA spends more time than Cppcheck, Coccinelle, Smatch,
CSA, Saber and SVF-Null in code analysis, as it computes alias rela-
tionships more precisely and performs path-sensitive analysis. Even
so, PATA finds many more real bugs, so we believe that the effec-
tiveness of its bug detection outweighs in its time overhead. PATA
spends less time than Infer, due to its efficient analysis techniques,
such as alias-aware typestate tracking and path validation.
Other approaches.Besides the above seven open-source approaches,
there are some other OS-bug detection approaches that detect spe-
cific bug types or are closed-source. For example, UBITect [87]
targets use-before-initialization bugs in OS code, and it performs
source-sink analysis and searches for a feasible path between the
source (allocation site) and the sink (use site) using symbolic exe-
cution; while PATA first performs alias-aware typestate analysis
without checking code-path feasibility, and then it uses alias re-
lationships to efficiently check the code-path feasibility of each
possible bug. MLEE [75] focuses on early-exit paths and detects
memory leaks by comparing these paths to normal paths in OS
code; while PATA considers more code paths and can detect mem-
ory leaks via typestate tracking. Moreover, when identifying alias
relationships, both UBITect and MLEE use points-to analysis that
can introduce some inaccuracy, while PATA performs path-based
alias analysis that can be more accurate. Coverity [21] is a commer-
cial static analysis tool that can detect different kinds of bugs. Linux
and Zephyr developers use it to check their code before each OS
version is released [22, 23]. Thus, we believe that the bugs found
by PATA in these two OSes should be missed by Coverity.

7 DISCUSSION
Benefiting other analyses with alias analysis. We believe that
the path-based alias analysis in PATA can be used to boost the
performance of other types of analysis. For example, in symbolic
execution [12, 56, 81], aliased variables can be mapped into a single
symbol with this alias analysis, to merge many constraints among
these variables, which can simplify constraint solving with no or
small precision loss. In model checking [11, 53], aliased variables in
a program can be mapped into a single variable in the model, to re-
duce the state space of the checked model, which can mitigate state
explosion problem. In API-rule checking [84], alias information can

868

Path-Sensitive and Alias-Aware Typestate Analysis for Detecting OS Bugs ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Table 8: Comparison results of the four OSes.

OS bug detection
Cppcheck

(NPD/UVA/ML)
Coccinelle

(NPD)
Smatch

(NPD/UVA/ML)
CSA

(NPD/UVA/ML)
Infer

(NPD/UVA/ML)
Saber
(ML)

SVF-Null
(NPD)

PATA
(NPD/UVA/ML)

Linux
Found bugs 324 (157/154/13) 35 423 (194/204/25) 1,151 (848/283/20) - OOM OOM 627 (508/102/17)
Real bugs 51 (44/6/1) 6 110 (87/19/4) 196 (156/40/0) - OOM OOM 454 (365/76/13)
Time usage 3h34m 13h40m 17h15m 19h32m - OOM OOM 33h01m

Zephyr
Found bugs 8 (1/7/0) 0 - - 44 (16/28/0) 4 14 30 (27/2/1)
Real bugs 1 (1/0/0) 0 - - 1 (1/0/0) 0 0 24 (24/0/0)
Time usage 24s 69s - - 197m 16s 54s 44m

RIOT
Found bugs 49 (14/33/2) 2 - - 54 (26/26/2) 9 11 106 (98/5/3)
Real bugs 6 (6/0/0) 2 - - 10 (8/1/1) 2 1 67 (62/2/3)
Time usage 57s 201s - - 166m 5s 67s 82m

TencentOS-tiny
Found bugs 63 (2/36/25) 2 - - 46 (24/22/0) 8 3 34 (14/13/7)
Real bugs 3 (2/1/0) 0 - - 4 (3/1/0) 0 3 29 (12/12/5)
Time usage 14s 46s - - 32m 13s 23s 22m

help to detect hard-to-find API misuses (e.g., caused by improper
or wrong uses of arguments) involving complex alias relationships.
Limitations of PATA. PATA still has several limitations in detect-
ing OS bugs. For example, PATA does not handle function-pointer
calls, and thus it cannot find bugs whose bug-trigger paths passing
through indirect function calls. Thus, we plan to introduce existing
function-pointer analysis [51, 54] in PATA. In addition, To reduce
the complexity of analyzing loops and recursive calls in our static
analysis, we unroll each loop and recursive call just once, which can
also cause unsoundness with reduced the accuracy of our bug detec-
tion. Thus, we plan to adapt some loop-oriented approaches [33, 68]
to handle complex cases involving loops and recursions.

8 RELATEDWORK
8.1 Static Analysis
Alias analysis. Many existing approaches [1, 9, 10, 26, 35–37, 48,
49, 67, 82, 83] perform points-to analysis and identify two pointers
to be aliases if their points-to sets have variables in common. These
approaches require all pointers to be initialized, so the points-to
sets of these pointers are not empty. To compute alias relationships
without points-to information, some approaches [7, 28, 38] perform
alias analysis based on access paths. Kastrinis et al. [43] design an
efficient data structure named alias graph to represent access path,
for flow-sensitive but path-insensitive must-alias analysis of Java.
Typestate analysis. Some approaches [2, 29, 34, 46, 74] use types-
tate analysis to detect various types of bugs in applications. Hallem
et al. [34] design a typestate analysis framework named xgcc with
a flexible language named metal to define typestate transitions for
bug detection. However, xgcc neglects alias relationships, so it is
limited in tracking typestates involving complex alias relationships.
To solve this problem, some approaches [27, 32, 77, 80] identify alias
relationships with flow-insensitive pointer analysis. However, they
introduce many false positives due to identifying imprecise alias
relationships. Several approaches [3, 78] use precise on-demand
backward-alias analysis to improve the accuracy of typestate anal-
ysis, but they can only detect specific bugs about variable tainting.
Value-flow analysis. Some approaches [31, 63, 64, 69] use value-
flow analysis to detect bugs in applications. They exploit def-use
chains to build value-flow graphs (VFG) [14, 69], and detect bugs
by solving source-sink problems on the graphs. To improve the
accuracy of bug detection, these approaches compute points-to in-
formation to identify alias relationships. But many OS functions do
not have explicit caller functions, so their pointer parameters have

incomplete points-to information, causing that points-to analysis
can miss many alias relationships. As a result, these approaches can
have many false positives and negatives when checking OS code.
Generic bug detection in OS code. Several static tools [8, 24,
25, 30, 55, 65] can detect different types of bugs in OS code. But
their alias analysis is imprecise (due to flow insensitivity) or even
lacked, and most of them (except CSA [25]) are path-insensitive
in code analysis. Thus, these tools often report false positives and
miss many real bugs.
Advantages of PATA. First, different from existing alias analysis,
PATA identifies alias relationships in the OS code according to
control-flow paths and access paths, without points-to information.
Second, PATA is path-sensitive to effectively reduce false positives.
Finally, PATA strategically uses alias relationships to reduce the
complexity and costs of typestate tracking and code-path validation.

8.2 Symbolic Execution
Some approaches [12, 15, 19, 47, 57, 58] use symbolic execution to
check the OS code. KLEE [12] is a well-known symbolic execution
engine implemented with LLVM. It explores possible execution
paths with constraint solving and generates concrete test cases
for each path. But symbolic execution is often time consuming in
analyzing large programs, because it needs to explore numerous
code paths and solve their path constraints with an expensive SMT
solver. To reduce time cost of solving path constraints, PATAmerges
SMT constraints involving aliased variables. Moreover, PATA only
validates the feasibility of the code paths for possible bugs, instead
of all possible code paths during static analysis.

8.3 Dynamic Analysis
Dynamic analysis has beenwidely used to detect OS bugs at runtime.
Some approaches [20, 44, 60, 71] use coverage-guided fuzzing to test
infrequently-executed code, by automatically mutating and generat-
ing system calls according to code coverage. Some approaches [6, 18,
41, 62] perform software fault injection to test error handling code,
by deliberately corrupting the return values of kernel-interface calls.
By using exact runtime information about OS execution, dynamic
analysis can effectively reduce false positives in bug detection. How-
ever, dynamic analysis requires substantial test cases to achieve
high code coverage and reduce false negatives, and it also degrades
OS performance caused by runtime monitoring.

869

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu

9 CONCLUSION
In this paper, we develop a novel path-sensitive and alias-aware
typestate analysis framework named PATA, to effectively detect
OS bugs. We have evaluated PATA on the Linux kernel and three
popular IoTOSes to detect three common types of bugs (null-pointer
dereferences, uninitialized-variable accesses and memory leaks).
We also experimentally compare PATA to seven state-of-the-art
static analysis approaches, and PATA finds many real bugs missed
by these approaches. In the evaluation, PATA in total finds 574 real
bugs with a low false positive rate of 28%, and 206 of these real
bugs have been confirmed by OS developers.

ACKNOWLEDGMENT
We thank our shepherd, Yuanyuan Zhou, and anonymous reviewers
for their helpful advice on the paper. We also thank OS developers,
who gave useful feedback and advice to us. This workwas supported
by the National Natural Science Foundation of China under Project
62002195 and Australian Research Grants DP210101348. Jia-Ju Bai
is the corresponding author.

REFERENCES
[1] Lars Ole Andersen. 1994. Program analysis and specialization for the C program-

ming language. Ph. D. Dissertation. University of Cophenhagen.
[2] Marcelo Arroyo, Francisco Chiotta, and Francisco Bavera. 2016. An user con-

figurable clang static analyzer taint checker. In Proceedings of the 35th In-
ternational Conference of the Chilean Computer Science Society (SCCC). 1–12.
https://doi.org/10.1109/SCCC.2016.7835996.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In Proceedings of the 35th International Con-
ference on Programming Language Design and Implementation (PLDI). 259–269.
https://doi.org/10.1145/2666356.2594299.

[4] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min Hu. 2019. Effective static
analysis of concurrency use-after-free bugs in Linux device drivers. In Proceedings
of the 2019 USENIX Annual Technical Conference (ATC). 255–268.

[5] Jia-Ju Bai, Julia Lawall, and Shi-Min Hu. 2020. Effective detection of sleep-in-
atomic-context bugs in the Linux kernel. ACM Transactions on Computer Systems
(TOCS) 36, 4 (2020), 1–30. https://doi.org/10.1145/3381990.

[6] Jia-Ju Bai, Yu-Ping Wang, Jie Yin, and Shi-Min Hu. 2016. Testing error handling
code in device drivers using characteristic fault injection. In Proceedings of the
2016 USENIX Annual Technical Conference (ATC). 635–647.

[7] George Balatsouras, Kostas Ferles, George Kastrinis, and Yannis Smaragdakis.
2017. A datalogmodel of must-alias analysis. In Proceedings of the 6th International
Workshop on State Of the Art in Program Analysis. 7–12. https://doi.org/10.1145/
3088515.3088517.

[8] Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir Levin. 2010. SLAM2:
static driver verification with under 4% false alarms. In Proceedings of the 2010
International Conference on Formal Methods in Computer-Aided Design (FMCAD).
35–42.

[9] Mohamad Barbar and Yulei Sui. 2021. Compacting points-to sets through object
clustering. In Proceedings of the 2021 International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA). 1–27. https://doi.
org/10.1145/3485547.

[10] Mohamad Barbar, Yulei Sui, and Shiping Chen. 2020. Flow-sensitive type-based
heap cloning. In Proceedings of the 34th European Conference on Object-Oriented
Programming (ECOOP 2020). 24:1–24:26. https://doi.org/10.4230/LIPIcs.ECOOP.
2020.24.

[11] Petr Bauch, Vojtěch Havel, and Jiří Barnat. 2014. LTL model checking of LLVM
bitcode with symbolic data. In Proceedings of the 2014 International Doctoral Work-
shop on Mathematical and Engineering Methods in Computer Science (MEMICS).
Springer, 47–59. https://doi.org/10.1007/978-3-319-14896-0_5.

[12] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In Proceedings of the 8th International Symposium on Operating Systems Design
and Implementation (OSDI). 209–224.

[13] Ben-Chung Cheng and Wen-Mei W Hwu. 2000. Modular interprocedural pointer
analysis using access paths: design, implementation, and evaluation. In Proceed-
ings of the 21st International Conference on Programming Language Design and

Implementation (PLDI). 57–69. https://doi.org/10.1145/349299.349311.
[14] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practical memory

leak detection using guarded value-flow analysis. In Proceedings of the 28th
International Conference on Programming Language Design and Implementation
(PLDI). 480–491. https://doi.org/10.1145/1250734.1250789.

[15] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: a
platform for in-vivo multi-path analysis of software systems. In Proceedings
of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 265–278. https://doi.org/10.1145/
1961296.1950396.

[16] Clang 2021. Clang: an LLVM-based C/C++ compiler. http://clang.llvm.org/.
[17] CLOC 2021. CLOC: count lines of code. https://cloc.sourceforge.net.
[18] Kai Cong, Li Lei, Zhenkun Yang, and Fei Xie. 2015. Automatic fault injection for

driver robustness testing. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis (ISSTA). 361–372. https://doi.org/10.1145/2771783.
2771811.

[19] Kai Cong, Fei Xie, and Li Lei. 2013. Symbolic execution of virtual devices. In
Proceedings of the 13th International Conference on Quality Software. 1–10. https:
//doi.org/10.1109/QSIC.2013.44.

[20] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang
Hao, Christopher Kruegel, and Giovanni Vigna. 2017. DIFUZE: interface aware
fuzzing for kernel drivers. In Proceedings of the 24th International Conference on
Computer and Communications Security (CCS). 2123–2138. https://doi.org/10.
1145/3133956.3134069.

[21] Coverity 2021. Coverity: a commercial static analysis tool. https://scan.coverity.
com/.

[22] Coverity reports for Linux 2021. Coverity reports for Linux kernel. https:
//github.com/torvalds/linux/search?q=coverity&type=commits.

[23] Coverity reports for Zephyr 2021. Coverity reports for Zephyr project. https:
//github.com/zephyrproject-rtos/zephyr/labels/Coverity.

[24] Cppcheck 2021. Cppcheck: a tool for static C/C++ code analysis. http://cppcheck.
sourceforge.net/.

[25] CSA 2021. Clang Static Analyzer. https://clang-analyzer.llvm.org/.
[26] Manuvir Das. 2000. Unification-based pointer analysis with directional assign-

ments. In Proceedings of the 21st International Conference on Programming Lan-
guage Design and Implementation (PLDI). 35–46. https://doi.org/10.1145/358438.
349309.

[27] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: path-sensitive program
verification in polynomial time. In Proceedings of the 23rd International Conference
on Programming Language Design and Implementation (PLDI). 57–68. https:
//doi.org/10.1145/512529.512538.

[28] Alain Deutsch. 1994. Interprocedural may-alias analysis for pointers: beyond
k-limiting. In Proceedings of the 15th International Conference on Programming
Language Design and Implementation (PLDI). 230–241. https://doi.org/10.1145/
773473.178263.

[29] Dinakar Dhurjati, Manuvir Das, and Yue Yang. 2006. Path-sensitive dataflow
analysis with iterative refinement. In Proceedings of the 13th International Static
Analysis Symposium (SAS). 425–442. https://doi.org/10.1007/11823230_27.

[30] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. 2000. Checking
system rules using system-specific, programmer-written compiler extensions.
In Proceedings of the 4th International Symposium on Operating System Design
(OSDI). 1–16.

[31] Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and Charles Zhang.
2019. Smoke: scalable path-sensitive memory leak detection for millions of lines
of code. In Proceedings of the 41st International Conference on Software Engineering
(ICSE). 72–82. https://doi.org/10.1109/ICSE.2019.00025.

[32] Stephen Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay. 2006.
Effective typestate verification in the presence of aliasing. In Proceedings of the
2006 International Symposium on Software Testing and Analysis (ISSTA). 133–144.
https://doi.org/10.1145/1348250.1348255.

[33] Bolei Guo, Neil Vachharajani, and David I August. 2007. Shape analysis with
inductive recursion synthesis. In Proceedings of the 28th International Conference
on Programming Language Design and Implementation (PLDI). 256–265. https:
//doi.org/10.1145/1250734.1250764.

[34] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. 2002. A system and
language for building system-specific, static analyses. In Proceedings of the 23rd
International Conference on Programming Language Design and Implementation
(PLDI). 69–82. https://doi.org/10.1145/512529.512539.

[35] Ben Hardekopf and Calvin Lin. 2009. Semi-sparse flow-sensitive pointer analysis.
In Proceedings of the 36th International Symposium on Principles of Programming
Languages (POPL). 226–238. https://doi.org/10.1145/1594834.1480911.

[36] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive pointer analysis for millions
of lines of code. In Proceedings of the 2011 International Symposium on Code
Generation and Optimization (CGO). 289–298. https://doi.org/10.1109/CGO.2011.
5764696.

[37] Nevin Heintze and Olivier Tardieu. 2001. Ultra-fast aliasing analysis using CLA:
a million lines of C code in a second. In Proceedings of the 22nd International
Conference on Programming Language Design and Implementation (PLDI). 254–263.

870

https://doi.org/10.1109/SCCC.2016.7835996
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/3381990
https://doi.org/10.1145/3088515.3088517
https://doi.org/10.1145/3088515.3088517
https://doi.org/10.1145/3485547
https://doi.org/10.1145/3485547
https://doi.org/10.4230/LIPIcs.ECOOP.2020.24
https://doi.org/10.4230/LIPIcs.ECOOP.2020.24
https://doi.org/10.1007/978-3-319-14896-0_5
https://doi.org/10.1145/349299.349311
https://doi.org/10.1145/1250734.1250789
https://doi.org/10.1145/1961296.1950396
https://doi.org/10.1145/1961296.1950396
http://clang.llvm.org/
https://cloc.sourceforge.net
https://doi.org/10.1145/2771783.2771811
https://doi.org/10.1145/2771783.2771811
https://doi.org/10.1109/QSIC.2013.44
https://doi.org/10.1109/QSIC.2013.44
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1145/3133956.3134069
https://scan.coverity.com/
https://scan.coverity.com/
https://github.com/torvalds/linux/search?q=coverity&type=commits
https://github.com/torvalds/linux/search?q=coverity&type=commits
https://github.com/zephyrproject-rtos/zephyr/labels/Coverity
https://github.com/zephyrproject-rtos/zephyr/labels/Coverity
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
https://clang-analyzer.llvm.org/
https://doi.org/10.1145/358438.349309
https://doi.org/10.1145/358438.349309
https://doi.org/10.1145/512529.512538
https://doi.org/10.1145/512529.512538
https://doi.org/10.1145/773473.178263
https://doi.org/10.1145/773473.178263
https://doi.org/10.1007/11823230_27
https://doi.org/10.1109/ICSE.2019.00025
https://doi.org/10.1145/1348250.1348255
https://doi.org/10.1145/1250734.1250764
https://doi.org/10.1145/1250734.1250764
https://doi.org/10.1145/512529.512539
https://doi.org/10.1145/1594834.1480911
https://doi.org/10.1109/CGO.2011.5764696
https://doi.org/10.1109/CGO.2011.5764696

Path-Sensitive and Alias-Aware Typestate Analysis for Detecting OS Bugs ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

https://doi.org/10.1145/381694.378855.
[38] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. 1999. Interpro-

cedural pointer alias analysis. ACM Transactions on Programming Languages and
Systems (TOPLAS) 21, 4 (1999), 848–894. https://doi.org/10.1145/325478.325519.

[39] Infer 2021. Facebook Infer: a tool to detect bugs in Java and C/C++/Objective-C
code. https://fbinfer.com/.

[40] Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. 1998.
Single and loving it: must-alias analysis for higher-order languages. In Proceedings
of the 25th International Symposium on Principles of Programming Languages
(POPL). 329–341. https://doi.org/10.1145/268946.268973.

[41] Zu-Ming Jiang, Jia-Ju Bai, Julia Lawall, and Shi-Min Hu. 2019. Fuzzing error
handling code in device drivers based on software fault injection. In Proceedings
of the 30th International Symposium on Software Reliability Engineering (ISSRE).
128–138. https://doi.org/10.1109/ISSRE.2019.00022.

[42] Vineet Kahlon. 2008. Bootstrapping: a technique for scalable flow and context-
sensitive pointer alias analysis. In Proceedings of the 29th International Conference
on Programming Language Design and Implementation (PLDI). 249–259. https:
//doi.org/10.1145/1379022.1375613.

[43] George Kastrinis, George Balatsouras, Kostas Ferles, Nefeli Prokopaki-
Kostopoulou, and Yannis Smaragdakis. 2018. An efficient data structure for
must-alias analysis. In Proceedings of the 27th International Conference on Com-
piler Construction (CC). 48–58. https://doi.org/10.1145/3178372.3179519.

[44] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. 2019. Finding semantic bugs in file systems with an extensible fuzzing
framework. In Proceedings of the 27th International Symposium on Operating
Systems Principles (SOSP). 147–161. https://doi.org/10.1145/3341301.3359662.

[45] Youil Kim, Jooyong Lee, Hwansoo Han, and Kwang-Moo Choe. 2010. Filtering
false alarms of buffer overflow analysis using SMT solvers. Information and
Software Technology (IST) 52, 2 (2010), 210–219. https://doi.org/10.1016/j.infsof.
2009.10.004.

[46] Goh Kondoh and Tamiya Onodera. 2008. Finding bugs in Java native interface
programs. In Proceedings of the 2008 International Symposium on Software Testing
and Analysis (ISSTA). 109–118. https://doi.org/10.1145/1390630.1390645.

[47] Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea. 2010. Testing
closed-source binary device drivers with DDT. In Proceedings of the 2010 USENIX
Annual Technical Conference (ATC). 1–14.

[48] Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making context-
sensitive points-to analysis with heap cloning practical for the real world. In
Proceedings of the 28th International Conference on Programming Language Design
and Implementation (PLDI). 278–289. https://doi.org/10.1145/1273442.1250766.

[49] Yuxiang Lei and Yulei Sui. 2019. Fast and precise handling of positive weight
cycles for field-sensitive pointer analysis. In Proceedings of the 26th International
Static Analysis Symposium (SAS). 27–47. https://doi.org/10.1007/978-3-030-32304-
2_3.

[50] LLVM 2021. LLVM compiler infrastructure. https://llvm.org/.
[51] Kangjie Lu and Hong Hu. 2019. Where does it go? refining indirect-call targets

with multi-layer type analysis. In Proceedings of the 26th International Conference
on Computer and Communications Security (CCS). 1867–1881. https://doi.org/10.
1145/3319535.3354244.

[52] Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting missing-check bugs
via semantic-and context-aware criticalness and constraints inferences. In Pro-
ceedings of the 28th USENIX Security Symposium. 1769–1786.

[53] Florian Merz, Stephan Falke, and Carsten Sinz. 2012. LLBMC: bounded model
checking of C and C++ programs using a compiler IR. In Proceedings of the 2012
International Conference on Verified Software: Tools, Theories, Experiments (VSTTE).
Springer, 146–161. https://doi.org/10.1007/978-3-642-27705-4_12.

[54] Ana Milanova, Atanas Rountev, and Barbara G Ryder. 2004. Precise call graphs
for C programs with function pointers. Automated Software Engineering 11, 1
(2004), 7–26. https://doi.org/10.1023/B:AUSE.0000008666.56394.a1.

[55] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. 2008.
Documenting and automating collateral evolutions in Linux device drivers. In
Proceedings of the 3rd European Conference on Computer Systems (EuroSys). 247–
260. https://doi.org/10.1145/1357010.1352618.

[56] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with
SymCC: don’t interpret, compile!. In Proceedings of the 30th USENIX Security
Symposium. 181–198.

[57] David A Ramos and Dawson Engler. 2015. Under-constrained symbolic execution:
correctness checking for real code. In Proceedings of the 24th USENIX Security
Symposium. 49–64.

[58] Matthew J Renzelmann, Asim Kadav, and Michael M Swift. 2012. SymDrive:
testing drivers without devices. In Proceedings of the 10th International Symposium
on Operating Systems Design and Implementation (OSDI). 279–292.

[59] RIOT 2021. RIOT: a real-time multi-threading operating system. https://github.
com/RIOT-OS/RIOT.

[60] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. kAFL: hardware-assisted feedback fuzzing for OS kernels.
In Proceedings of the 26th USENIX Security Symposium. 167–182.

[61] Semantic patches of Coccinelle 2021. Project to study faults in Linux. https:
//github.com/coccinelle/faults-in-Linux.

[62] V Shakti D Shekar, BB Meshram, and MP Varshapriya. 2012. Device driver fault
simulation using KEDR. International Journal of Advanced Research in Computer
Engineering and Technology (2012), 580–584.

[63] Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang. 2020. Conquering the
extensional scalability problem for value-flow analysis frameworks. In Proceedings
of the 42nd International Conference on Software Engineering (ICSE). 812–823.
https://doi.org/10.1145/3377811.3380346.

[64] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang.
2018. Pinpoint: fast and precise sparse value flow analysis for million lines of code.
In Proceedings of the 39th International Conference on Programming Language
Design and Implementation (PLDI). 693–706. https://doi.org/10.1145/3192366.
3192418.

[65] Smatch 2021. Smatch: a static bug-finding tool for C. http://smatch.sourceforge.
net/.

[66] Robert E Strom and Shaula Yemini. 1986. Typestate: a programming language con-
cept for enhancing software reliability. IEEE Transactions on Software Engineering
(TSE) 1, 1 (1986), 157–171. https://doi.org/10.1109/TSE.1986.6312929.

[67] Yulei Sui, Peng Di, and Jingling Xue. 2016. Sparse flow-sensitive pointer analysis
for multithreaded programs. In Proceedings of the 2016 International Symposium
on Code Generation and Optimization (CGO). 160–170. https://doi.org/10.1145/
2854038.2854043.

[68] Yulei Sui, Xiaokang Fan, Hao Zhou, and Jingling Xue. 2018. Loop-oriented
pointer analysis for automatic simd vectorization. ACMTransactions on Embedded
Computing Systems (TECS) 17, 2 (2018), 1–31. https://doi.org/10.1145/3168364.

[69] Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting memory leaks statically
with full-sparse value-flow analysis. IEEE Transactions on Software Engineering
(TSE) 40, 2 (2014), 107–122. https://doi.org/10.1109/TSE.2014.2302311.

[70] SVF wiki 2021. SVF wiki. https://github.com/SVF-tools/SVF/wiki/Detecting-
memory-leaks.

[71] Syzkaller 2021. Syzkaller: a kernel fuzzer. https://github.com/google/syzkaller.
[72] Seyed Mohammadjavad Seyed Talebi, Zhihao Yao, Ardalan Amiri Sani, Zhiyun

Qian, and Daniel Austin. 2021. Undo workarounds for kernel bugs. In Proceedings
of the 30th USENIX Security Symposium.

[73] TencentOS-tiny 2021. TencentOS-tiny: a real-time IoT operating system devel-
oped by Tencent. https://github.com/Tencent/TencentOS-tiny.

[74] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao
Qin, Hongxu Chen, and Yulei Sui. 2020. Typestate-guided fuzzer for discovering
use-after-free vulnerabilities. In Proceedings of the 42nd International Confer-
ence on Software Engineering (ICSE). 999–1010. https://doi.org/10.1145/3377811.
3380386.

[75] Wenwen Wang. 2021. MLEE: effective detection of memory leaks on early-
exit paths in OS kernels. In Proceedings of the 2021 USENIX Annual Technical
Conference (ATC). 31–45.

[76] WLLVM 2021. WLLVM: whole program LLVM. https://github.com/travitch/
whole-program-llvm.

[77] Xusheng Xiao, Gogul Balakrishnan, Franjo Ivančić, Naoto Maeda, Aarti Gupta,
and Deepak Chhetri. 2014. ARC++: effective typestate and lifetime dependency
analysis. In Proceedings of the 2014 International Symposium on Software Testing
and Analysis (ISSTA). 116–126. https://doi.org/10.1145/2610384.2610395.

[78] Zhiwu Xu, Dongxiao Fan, and Shengchao Qin. 2016. State-Taint Analysis for
Detecting Resource Bugs. In Proceedings of the 10th International Symposium on
Theoretical Aspects of Software Engineering (TASE). 168–175. https://doi.org/10.
1016/j.scico.2017.06.010.

[79] Dacong Yan, Guoqing Xu, and Atanas Rountev. 2011. Demand-driven context-
sensitive alias analysis for Java. In Proceedings of the 2011 International Symposium
on Software Testing and Analysis (ISSTA). 155–165. https://doi.org/10.1145/
2001420.2001440.

[80] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2017. Machine-learning-
guided typestate analysis for static use-after-free detection. In Proceedings of the
33rd Annual Computer Security Applications Conference (ACSAC). 42–54. https:
//doi.org/10.1145/3134600.3134620.

[81] Guowei Yang, Corina S Păsăreanu, and Sarfraz Khurshid. 2012. Memoized sym-
bolic execution. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis (ISSTA). 144–154. https://doi.org/10.1145/2338965.2336771.

[82] Sen Ye, Yulei Sui, and Jingling Xue. 2014. Region-based selective flow-sensitive
pointer analysis. In Proceedings of the 21st International Static Analysis Symposium
(SAS). 319–336. https://doi.org/10.1007/978-3-319-10936-7_20.

[83] Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing Zhang. 2010.
Level by level: making flow-and context-sensitive pointer analysis scalable for
millions of lines of code. In Proceedings of the 2010 International Symposium
on Code Generation and Optimization (CGO). 218–229. https://doi.org/10.1145/
1772954.1772985.

[84] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur
Naik. 2016. APISan: sanitizing API usages through semantic cross-checking. In
Proceedings of the 25th USENIX Security Symposium. 363–378.

[85] Z3 2021. Z3: a theorem prover. https://github.com/Z3Prover/z3.

871

https://doi.org/10.1145/381694.378855
https://doi.org/10.1145/325478.325519
https://fbinfer.com/
https://doi.org/10.1145/268946.268973
https://doi.org/10.1109/ISSRE.2019.00022
https://doi.org/10.1145/1379022.1375613
https://doi.org/10.1145/1379022.1375613
https://doi.org/10.1145/3178372.3179519
https://doi.org/10.1145/3341301.3359662
https://doi.org/10.1016/j.infsof.2009.10.004
https://doi.org/10.1016/j.infsof.2009.10.004
https://doi.org/10.1145/1390630.1390645
https://doi.org/10.1145/1273442.1250766
https://doi.org/10.1007/978-3-030-32304-2_3
https://doi.org/10.1007/978-3-030-32304-2_3
https://llvm.org/
https://doi.org/10.1145/3319535.3354244
https://doi.org/10.1145/3319535.3354244
https://doi.org/10.1007/978-3-642-27705-4_12
https://doi.org/10.1023/B:AUSE.0000008666.56394.a1
https://doi.org/10.1145/1357010.1352618
https://github.com/RIOT-OS/RIOT
https://github.com/RIOT-OS/RIOT
https://github.com/coccinelle/faults-in-Linux
https://github.com/coccinelle/faults-in-Linux
https://doi.org/10.1145/3377811.3380346
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3192366.3192418
http://smatch.sourceforge.net/
http://smatch.sourceforge.net/
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/2854038.2854043
https://doi.org/10.1145/2854038.2854043
https://doi.org/10.1145/3168364
https://doi.org/10.1109/TSE.2014.2302311
https://github.com/SVF-tools/SVF/wiki/Detecting-memory-leaks
https://github.com/SVF-tools/SVF/wiki/Detecting-memory-leaks
https://github.com/google/syzkaller
https://github.com/Tencent/TencentOS-tiny
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/3377811.3380386
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
https://doi.org/10.1145/2610384.2610395
https://doi.org/10.1016/j.scico.2017.06.010
https://doi.org/10.1016/j.scico.2017.06.010
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/3134600.3134620
https://doi.org/10.1145/3134600.3134620
https://doi.org/10.1145/2338965.2336771
https://doi.org/10.1007/978-3-319-10936-7_20
https://doi.org/10.1145/1772954.1772985
https://doi.org/10.1145/1772954.1772985
https://github.com/Z3Prover/z3

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu

[86] Zephyr 2021. Zephyr: a scalable real-time operating system. https://github.com/
zephyrproject-rtos/zephyr.

[87] Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song, Zhiyun Qian,
Mohsen Lesani, Srikanth V Krishnamurthy, and Paul Yu. 2020. UBITect: a precise
and scalable method to detect use-before-initialization bugs in Linux kernel. In
Proceedings of the 28th International Symposium on the Foundations of Software
Engineering (FSE). 221–232. https://doi.org/10.1145/3368089.3409686.

[88] Qirun Zhang, Xiao Xiao, Charles Zhang, Hao Yuan, and Zhendong Su. 2014.
Efficient subcubic alias analysis for C. In Proceedings of the 2014 International
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA). 829–845. https://doi.org/10.1145/2660193.2660213.

[89] Xin Zheng and Radu Rugina. 2008. Demand-driven alias analysis for C. In
Proceedings of the 35th International Symposium on Principles of Programming
Languages (POPL). 197–208. https://doi.org/10.1145/1328438.1328464.

872

https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/zephyr
https://doi.org/10.1145/3368089.3409686
https://doi.org/10.1145/2660193.2660213
https://doi.org/10.1145/1328438.1328464

	Abstract
	1 Introduction
	2 Motivation
	2.1 A Motivating Example
	2.2 Challenges

	3 Key Techniques
	3.1 Path-Based Alias Analysis
	3.2 Alias-Aware Typestate-Tracking Method
	3.3 Alias-Aware Path-Validation Method

	4 Framework
	5 Evaluation
	5.1 Bug Detection
	5.2 False Positives
	5.3 Case Studies of Bugs Found by PATA
	5.4 Sensitivity Analysis
	5.5 Generality to Other Bug Types

	6 Comparison to Existing Approaches
	7 Discussion
	8 Related Work
	8.1 Static Analysis
	8.2 Symbolic Execution
	8.3 Dynamic Analysis

	9 Conclusion
	References

