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ABSTRACT
Operating system (OS) is the cornerstone for modern computer
systems. It manages devices and provides fundamental service for
user-level applications. Thus, detecting bugs in OSes is important
to improve reliability and security of computer systems. Static
typestate analysis is a common technique for detecting different
types of bugs, but it is often inaccurate or unscalable for large-size
OS code, due to imprecision of identifying alias relationships as well
as high costs of typestate tracking and path-feasibility validation.

In this paper, we present PATA, a novel path-sensitive and alias-
aware typestate analysis framework to detect OS bugs. To improve
the precision of identifying alias relationships in OS code, PATA
performs a path-based alias analysis based on control-flow paths
and access paths. With these alias relationships, PATA reduces
the costs of typestate tracking and path-feasibility validation, to
boost the efficiency of path-sensitive typestate analysis for bug
detection. We have evaluated PATA on the Linux kernel and three
popular IoTOSes (Zephyr, RIOT and TencentOS-tiny) to detect three
common types of bugs (null-pointer dereferences, uninitialized-
variable accesses and memory leaks). PATA finds 574 real bugs with
a false positive rate of 28%. 206 of these bugs have been confirmed
by the developers of the four OSes. We also compare PATA to seven
state-of-the-art static approaches (Cppcheck, Coccinelle, Smatch,
CSA, Infer, Saber and SVF). PATA finds many real bugs missed by
them, with a lower false positive rate.

CCS CONCEPTS
• Software and its engineering→ Software defect analysis; •
Security and privacy → Operating systems security.
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1 INTRODUCTION
Operating system (OS) is the fundamental software of modern
computer systems. Apart from classical general-purpose OSes (such
as the Linux kernel), many new OSes have been developed for
specific purposes. For example, due to the rise of IoT techniques,
many IoTOSes (such as Zephyr) have been developed tomanage IoT
devices and support IoT applications. However, each OS inevitably
has bugs, as it is quite large and complex. Even a simple OS bug
(such as null-pointer dereference) can cause system crash, malicious
attack and other runtime problems [72]. Thus, it is important to
detect OS bugs to secure the foundation of computer systems.

Static typestate analysis [66] is a common technique to detect
different types of bugs. Typestates associate state information with
each program variable. This state information is used to determine
which operations can be validly invoked upon a given variable.
A typestate property is a finite state machine (FSM) to determine
whether a sequence of observable operations are valid, and an in-
valid operation sequence can potentially cause a bug. Typestate
analysis typically performs on top of the control-flow graph (CFG)
of a program. To improve accuracy, some approaches [27, 29] per-
form path-sensitive analysis but focus on analyzing scalars not
pointers. To solve this problem, some typestate approaches [32, 77]
consider pointer alias relationships using imprecise flow-insensitive
points-to analysis. Unfortunately, flow-insensitive alias results used
in path-sensitive analysis can potentially introduce many false posi-
tives in bug detection, especially for large-size programs (like OSes)
containing complex alias relationships.

Similar to typestate analysis, some generic static tools [8, 24,
25, 30, 55, 65] can detect different types of OS bugs based on pre-
defined rules or variable states. Most of these approaches are path-
insensitive (except CSA [25]) and use imprecise alias analysis (e.g.,
flow-insensitive analysis) or even ignore aliases, so they often report
false positives and miss many real bugs.

To improve the accuracy of path-sensitive typestate analysis, it
is important to capture precise alias relationships. However, there
are two difficulties for analyzing OS code: (D1) Points-to analysis is
insufficient to identify precise alias relationships in OSes. Generally,
points-to analysis needs to model heap objects per memory allo-
cation. However, due to the multi-module and application-driven
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FILE: linux-5.6/drivers/media/platform/s5p-mfc/s5p_mfc.c
1266. static int s5p_mfc_probe(struct platform_device *pdev) {

 ......
1280.  dev->plat_dev = pdev;   // create alias relationship
1281.  if (!dev->plat_dev) {   // pdev can be NULL
1282.  dev_err(&pdev->dev, ...);  // Null-pointer dereference!
1283.  return -ENODEV;
1284.  }

 ......
1415. }

// These interface functions have no explicit caller functions 
// in the OS code
1664. static struct platform_driver s5p_mfc_driver = {
1665.    .probe = s5p_mfc_probe,
1666.    .remove = s5p_mfc_remove,

 ......
1672. }

Module interface functions

Figure 1: A real null-pointer dereference in Linux 5.6.

nature of OSes, many functions do not have explicit caller func-
tions. Thus, their pointer parameters can have incomplete points-to
information, causing points-to analysis to miss many alias relation-
ships. For example, dev->plat_dev and pdev in Figure 1 should be
aliases and a null-pointer dereference at Line 1282 is triggered if the
argument pdev is NULL. However, the function s5p_mfc_probe
is implicitly called via a function-pointer field .probe of struct
s5p_mfs_driver in another OS module. Thus, pdev has an empty
points-to set, causing that pdev and dev->plat_dev are not treated
as aliases since their points-to sets have no intersection. Therefore,
the bug at Line 1282 cannot be found by points-to analysis based
approaches. To handle such alias relationships, points-to analysis
should record all the alias pairs generated by assignment state-
ments, causing high memory overhead and unscalability to large
codebases like OSes. (D2) An OS codebase is very large, containing
an excessive number of variables and code paths. Thus, tracking
variable typestates and checking path feasibility in OS code are
expensive, especially when detecting multiple types of bugs.

Recently, some path-sensitive approaches [31, 63, 64, 69] conduct
reachability analysis based on pre-computed value-flow graphs to
detect specific types of bugs (e.g., memory leaks). But their value-
flow graphs are built with points-to analysis, which can miss many
alias relationships when analyzing OS code (D1). In addition, they
perform only source-sink-based reachability analysis but not main-
taining typestates, so they are not generic to multiple bug types.
Basic idea and novel techniques. Path-sensitive typestate anal-
ysis is effective in detecting bugs in applications, but applying this
technique to OS code is challenging, because an OS typically has a
large codebase and complex alias relationships. To solve this prob-
lem, our basic idea is: (i1) identifying alias relationships based on
control-flow paths and access paths without using points-to infor-
mation, and (i2) using these alias relationships to reduce the costs of
typestate tracking and code-path validation. Based on this idea, we
propose three novel techniques:

For i1, we propose a path-based alias analysis to compute alias
relationships based on control-flow paths and access paths, without
using points-to information. This analysis is inter-procedural, flow-
sensitive and field-sensitive. For a control-flow path, this analysis
maintains an alias graph at each program point to represent alias
relationships in the path. Each alias graph is updated according to
the analyzed instructions and access paths of the involved variables.

For i2, we observe that merging aliased variables can significantly
reduce the number of typestates for bug detection and SMT con-
straints for path-feasibility validation, to boost analysis efficiency.

Path-based 
alias analysis

Alias-aware 
typestate-tracking 

method

Alias 
relationships

Possible bugs

Alias-aware 
path-validation 

method

Bug reports

Stage 1: code analysis Stage 2: bug filtering

OS code

Benefit

Benefit

Figure 2: PATA workflow.

Based on this observation, we propose an alias-aware typestate-
tracking method to efficiently detect multiple types of bugs, and an
alias-aware path-validation method to efficiently check code-path
feasibility of possible bugs. These two methods both benefit from
the alias relationships identified by our path-based alias analysis.
Differences from existing approaches. First, unlike existing
typestate-tracking methods [27, 29, 32, 77] that maintain one state
for each variable, our alias-aware typestate-tracking method main-
tains one typestate for all variables in the same alias set, and updates
this typestate when one of these aliased variables is handled by an
instruction related to the target bug type. In this way, our method
effectively reduces the amount of typestates that need to be tracked.

Second, unlike existing path-validation methods [31, 45, 64, 69]
that build an SMT symbol for each variable to solve path constraints,
our approach maps all variables in the same alias set to one SMT
symbol to reduce the amount of SMT constraints to be solved. In ad-
dition, to accurately handle data structures, our typestate-tracking
and path-validation methods are field-sensitive by distinguishing
fields of a data structure.

Finally, unlike existing generic static tools [8, 24, 25, 30, 55, 65]
for OS code, our alias-aware typestate-tracking method uses more
alias relationships to improve accuracy, and our alias-aware path-
validation method enables the path sensitivity of bug detection.

With the above three techniques, we develop PATA (Path-sensitive
and Alias-aware Typestate Analysis), a novel typestate analysis
framework to detect OS bugs. PATA first identifies alias relation-
ships without using points-to information and then uses these alias
relationships to reduce the costs of typestate tracking and code-
path validation. PATA has two stages shown in Figure 2. In Stage
1, PATA analyzes the OS code using our path-based alias analysis
and alias-aware typestate-tracking method. For each code path, our
alias analysis identifies alias sets as alias relationships; meanwhile,
our alias-aware typestate-tracking method uses the identified alias
relationships to analyze instructions in the code path to detect
possible bugs, without validating path feasibility. In Stage 2, our
path-validation method uses an SMT solver Z3 [85] to check the
path feasibility of each possible bug to filter out false alarms, with
the alias relationships identified in Stage 1. Finally, PATA produces
readable reports of the found bugs. We have implemented PATA
using LLVM [16] to automatically analyze OS code. Overall, we
make four main contributions:

• We first analyze the challenges of path-sensitive typestate
analysis for OS code, and then propose a new solution idea:
(i1) identifying alias relationships based on control-flow
paths and access paths without using points-to information,
and (i2) using these alias relationships to reduce the costs of
typestate tracking and code-path validation.
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• Based on this idea, we propose three novel techniques: (1) a
path-based alias analysis to identify alias relationships based
on control-flow paths and access paths; (2) an alias-aware
typestate-tracking method to effectively detect different types
of bugs according to alias relationships; (3) an alias-aware
path-validation method to efficiently filter out false bugs with
an SMT solver and alias relationships. Note that typestate-
tracking and path-validation methods both benefit from the
alias relationships identified by path-based alias analysis.

• With the three techniques, we develop a novel path-sensitive
and alias-aware typestate analysis framework named PATA,
to effectively detect multiple types of OS bugs.

• We evaluate PATA on the Linux kernel and three popular IoT
OSes (Zephyr, RIOT and TencentOS-tiny) to detect three com-
mon types of bugs (null-pointer dereferences, uninitialized-
variable accesses and memory leaks). PATA finds 574 real
bugs (including 463 null-pointer dereferences, 90 uninitialized-
variable accesses and 21 memory leaks) with a false positive
rate of 28%. 206 of these bugs have been confirmed by OS
developers. We compare PATA to seven existing static ap-
proaches, and PATA finds many real bugs missed by them
with a lower false positive rate.

2 MOTIVATION
2.1 A Motivating Example
Figure 3 shows a real null-pointer dereference in the Zephyr Blue-
tooth subsystem. In the function friend_set, the pointer cfg is
first assigned with a data structure field model->user_data at Line
2709, and then it is compared to NULL in an if check at Line 2720, indi-
cating that cfg and model->user_data can be NULL. If so, the func-
tion send_friend_status is called with model at Line 2748 in error
handling code. In this function, the pointer cfg is assigned with the
variable model->user_data at Line 2684. As model->user_data
is NULL in this case, indicating that cfg is NULL, a null-pointer deref-
erence can occur when cfg->frnd is accessed at Line 2687.

FILE: zephyr-2.1.0/subsys/bluetooth/cfg_srv.c
2680. static void send_friend_status(type *model, ...) {

 ......
2684.  struct bt_mesh_cfg_srv *cfg = model->user_data;  // Alias

 ......
2687.  net_buf_simple_add_u8(&msg, cfg->frnd);  // Unsafe dereference!

 ......
2692. }

2705. static void friend_set(...) {
 ......

2709.  struct bt_mesh_cfg_srv *cfg = model->user_data;  // Alias
 ......

2720.  if (!cfg) {     // Pointer cfg can be NULL
2721.  BT_WARN(...);
2722.  goto send_status;
2723.  }

 ......
2747. send_status:
2748.  send_friend_status(model, ctx);
2749. }

Figure 3: A real null-pointer dereference in Zephyr.

This bug involves multiple alias relationships of data structure
fields across multiple functions, and it is triggered only when
model->user_data in the function friend_set is actually NULL.
Such requirement is difficult to satisfy by executing existing test
suites. In fact, this bug had existed for nearly 3 years since Zephyr
1.8.0 (released in Jun. 2017), and it was fixed by Zephyr developers
based on a report generated by our PATA framework.

2.2 Challenges
Static typestate analysis has three important challenges when de-
tecting bugs in OS code:
C1: Performing precise alias analysis. In OS code, due to the
heavy use of pointers and data structure fields (like Figure 3), the
alias relationships between variables can be very complex, espe-
cially when involving multiple code paths and function calls. More-
over, many OS functions do not have explicit caller functions in the
OS code. Thus, their pointer parameters can have incomplete points-
to information, making points-to analysis [1, 26, 35–37, 48, 49, 69, 82,
83] generally miss many alias relationships. Moreover, existing flow-
sensitive must-alias or may-alias analyses [7, 40, 42, 43, 79, 88, 89]
compute the intersection or union of alias sets at each joint points
of different control-flow paths, which can miss many real alias
relationships or introduce many false alias relationships for each
control-flow path. Therefore, it is important to improve the preci-
sion of identifying alias relationships in OS code.
C2: Detecting multiple types of bugs. An effective typestate
analysis framework should be applicable to multiple bug types
by tracking the typestates of each variable. But there are lots of
variables in the OS, and thus tracking the typestates of each variable
can be quite expensive. Therefore, it is important to efficiently track
typestates for multiple types of bugs.
C3: Dropping false bugs. On the one hand, without validating
path feasibility, static typestate analysis often reports many false
bugs. On the other hand, there are lots of code paths in the OS, and
thus using an SMT solver to validate all possible code paths can
be very costly. Therefore, it is important to check the feasibility of
code paths with low costs.

3 KEY TECHNIQUES
To address the above challenges, we propose three key techniques.
For C1, we propose a path-based alias analysis to identify alias
relationships based on control-flow paths and access paths, without
using points-to information. For C2, we propose an alias-aware
typestate-tracking method to effectively detect different types of
bugs according to alias relationships. For C3, we propose an alias-
aware path-validation method to efficiently filter out false bugs
with an SMT solver and alias relationships. We introduce them as
follows.

3.1 Path-Based Alias Analysis
In OS code, a variable can be aliased with different variables in
different control-flow paths. Thus, computing alias relationships
for each control-flow path can produce precise alias results, which
can effectively reduce false positives and negatives in bug detection.
Moreover, each OS is modularly-designed and application-driven,
causing that many functions do not have explicit caller functions in
the OS code, and thus points-to sets of their pointer-type parameters
can be incomplete. Based on these insights, we propose a path-
based alias analysis by extending alias graph [43], and identify
alias relationships according to control-flow paths and access paths,
without using points-to information.
Alias graph. It is an important data structure to represent alias
relationships in our alias analysis, so we introduce it first.
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Definition 1. An alias graph is a 2-tuple G = ⟨N , E⟩, where N
is a set of nodes, and each node n represents an alias class (i.e., a set
of variables Vars(n)) that points to one abstract object. E is a set of
labeled edges. Each edge is labeled with a data structure field or a
dereference operator “∗”, which represents how an abstract object is
accessed.

A variable residing in a node followed by a sequence of edge
labels form an access path [13, 43]. Access paths ending with the
same node on an alias graph form an alias set. Variables in the same
alias set are aliases. Variables residing in a single node is considered
as an access path with a length of 0.

Example 1. Figure 4(a) shows an alias graph containing four
nodes and three edges. Two edges are labeled with data-structure-field
accesses (i.e.,f and g), and the other edge is labeled with a pointer
dereference. Take node n3 as an example, there are four access paths
&x->f, &y->g, p and q to it, and the lengths of access paths p and q
are both 0. The alias sets based on the access path results are shown
in Figure 4(b).

y

x

p, q s

f

g

*

AliasSet(n1): {x}
AliasSet(n2): {y}
AliasSet(n3): {p, q, &x->f, &y->g}
AliasSet(n4): {s, *p, *q, *(&x->f), *(&y->g)}

n1

n2 n3 n4

(a) Alias graph (b) Alias sets

Figure 4: Example of alias graph.

Given a node n and an edge label l, there is only one outgoing
edge labeled with l from n. It indicates that a variable or an ex-
pression refers to only one abstract object per access path. Finally,
every program point will maintain a separate alias graph based on
a program path reaching this point. If Vars(n) of a node n changes
during alias analysis, the alias graph is also considered as updated.
Building and updating alias graph. The alias graph is built from
the entry of a function containing a set of isolated nodes, and each
of them represents a single variable in the program. Then, our alias
analysis updates the alias graph, according to the program instruc-
tions in form of the LLVM IR [50]. Our analysis focuses on four types
of instructions that can handle alias relationships: MOVE(v1 = v2 ),
STORE(∗v2 = v1), LOAD(v1 = ∗v2), and GEP(v1 = &v2->f ). Note
that our alias analysis is field-sensitive to handle data structures
in OS code. Each access to a data structure field via LLVM’s getele-
mentptr instruction is handled through the GEP operation. The
rules for each operation to update an alias graph are shown in Fig-
ure 5. The notations used in pseudocodes are described in Table 1.
The four operations mentioned above are as follows:

HandleMOVE(v1 = v2 , G). After this operation, v1 is represented
by n2 not n1 (Lines 3-4), and thus v1 and v2 are represented by the
same node, which indicates they become aliases. The change made
on the variable sets of n1 and n2 indicates a changed alias graph.

HandleSTORE(∗v2 = v1, G). If n2 has an outgoing edge labeled
with ∗, it is dropped (Lines 8-9) and an edge labeled with ∗ from n2
to n1 is added (Line 11), so access paths ∗v2 and v1 reach the same
node n1. It indicates that after this operation, ∗v2 and v1 are aliases.

HandleLOAD(v1 = ∗v2 , G). If n2 has an outgoing edge labeled
with ∗, the target node of this edge represents v1 after this operation
(Lines 15-17). Otherwise, an edge labeled with ∗ from n2 to n1 (Line

Table 1: Notation table of pseudocodes.

ni ∈ 𝑁 A node in an alias graph G = ⟨N , E⟩.
ni

l→ nj ∈ E Adirected edge labeled in an alias graph. l is a field access or
a pointer dereference, representing how an abstract object
is accessed.

path A stack of instructions (program statements) per control-
flow path. It can also represent program point of the instruc-
tion on its top.

GetNode(v, N ) The node representing variable v.
Vars(n) A set of variables that n represents.
GetArg(func, i) The ith formal parameter of func.
GetReturnValue(func) The return value of func.
UpdateAliasGraph(path) Alias-graph update under path.
TypestateTrack(path, G) Bug detection given the current alias graph G and the code

path path (This process will be introduced in Section 3.2).
Next(inst) The successive instructions of inst on CFG.

define: HandleGEP(𝑣1 = &𝑣2->𝑓, < 𝑁,𝐸 >)
22: 𝑛1 := GetNode(𝑣1, 𝑁);
23: 𝑛2 := GetNode(𝑣2, 𝑁);
24: if 𝑛2 → 𝑛𝑥 ∈ 𝐸 then
25:     Vars(𝑛1) := Vars(𝑛1) - {𝑣1};
26:     Vars(𝑛𝑥) := Vars(𝑛𝑥) ∪ {𝑣1};
27: else
28:     𝐸 := 𝐸 ∪ {𝑛2 → 𝑛1};
29: end if
30: return < 𝑁,𝐸 >;

define: HandleSTORE(*𝑣2 = 𝑣1, < 𝑁,𝐸 >)
6: 𝑛1 := GetNode(𝑣1, 𝑁);
7: 𝑛2 := GetNode(𝑣2, 𝑁);
8: if 𝑛2 → 𝑛𝑥 ∈ 𝐸 then
9:  𝐸 := 𝐸 − {𝑛2 → 𝑛𝑥};

10: end if
11: 𝐸 := 𝐸 ∪ {𝑛2 → 𝑛1};
12: return < 𝑁,𝐸 >;

define: HandleMOVE(𝑣1 = 𝑣2, < 𝑁,𝐸 >)
1: 𝑛1 := GetNode(𝑣1, 𝑁);
2: 𝑛2 := GetNode(𝑣2, 𝑁);
3: Vars(𝑛1) := Vars(𝑛1) – {𝑣1};
4: Vars(𝑛2) := Vars(𝑛2) ∪ {𝑣1};
5: return < 𝑁,𝐸 >;

𝑣1 𝑣1, 𝑣2

define: HandleLOAD(𝑣1 = *𝑣2 , < 𝑁,𝐸 >)
13: 𝑛1 := GetNode(𝑣1, 𝑁);
14: 𝑛2 := GetNode(𝑣2, 𝑁);
15: if 𝑛2 → 𝑛𝑥 ∈ 𝐸 then
16:     Vars(𝑛1) := Vars(𝑛1) - 𝑣1 ;
17:     Vars(𝑛𝑥) := Vars(𝑛𝑥) ∪ {𝑣1};
18: else
19:    𝐸 := 𝐸 ∪ {𝑛2 → 𝑛1};
20: end if
21: return < 𝑁,𝐸 >;

𝑣1

𝑣2*

𝑣1

𝑣2

𝑣1

𝑣2

𝑣1

(a) Rules for updating alias graph (b) Examples of updating

𝑛1

𝑛2 𝑛1

𝑛2𝑛2
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𝑣2

𝑣1

𝑣2

𝑣1

𝑣2

𝑣2
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𝑛2 𝑛2
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𝑛1

𝑛2

𝑛1
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𝑣2

𝑣1

𝑣2

𝑣2

𝑛2 𝑛2
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𝑛1

𝑛2

𝑛1

𝑛2

𝑓 𝑓

𝑓

∗

∗

∗

∗

∗

𝑓

𝑓

Figure 5: Rules for updating alias graph.

19) is inserted. Thus, the access paths v1 and ∗v2 reach the same
node, which indicates that v1 and ∗v2 are aliases.

HandleGEP(v1 = &v2->f , G). This operation is similar to Han-
dleLOAD, except that the edge is labeled with a data structure field
f , instead of a dereference operator “∗”.
Path-based alias analysis. For each control-flow path, it builds
and updates alias graphs by analyzing each instruction in this path.
Figure 6 shows the pseudocodes of our alias analysis. For each
function without a caller function, the analysis builds an alias graph
with each node represents a single variable in the OS code (Lines 1-
6). Then, the analysis starts from the first instruction of the analyzed
function (Lines 9-11), and performs a depth-first traversal along
the control flow. The alias graphs are updated for each instruction
(Lines 23-29). Bug detection is performed by tracking typestates
of related alias set (Line 31). This process serves as an interface
named TypestateTrack, which will be introduced in Section 3.2. To
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define: HandleINST(𝑝𝑎𝑡ℎ, 𝐺) 
22: 𝑖𝑛𝑠𝑡 := 𝑝𝑎𝑡ℎ. 𝑡𝑜𝑝();
23: switch 𝑡𝑦𝑝𝑒𝑜𝑓(𝑖𝑛𝑠𝑡):
24:  case 𝑣1 = 𝑣2: 𝐺′ := HandleMOVE(𝑖𝑛𝑠𝑡, 𝐺); break;
25:  case *𝑣2 = 𝑣1: 𝐺′ := HandleSTORE(𝑖𝑛𝑠𝑡, 𝐺); break;
26:  case 𝑣1 =*𝑣2: 𝐺′ := HandleLOAD(𝑖𝑛𝑠𝑡, 𝐺); break;
27:  case 𝑣1 = &𝑣2->𝑓: 𝐺′ := HandleGEP(𝑖𝑛𝑠𝑡, 𝐺); break;
28:  case 𝑣 = 𝑓𝑢𝑛𝑐 𝑣1, … , 𝑣𝑛 : 𝐺′ := HandleCALL(𝑖𝑛𝑠𝑡, 𝑝𝑎𝑡ℎ, 𝐺); break;
29: end switch
30: UpdateAliasGraph(𝑝𝑎𝑡ℎ) := 𝐺′;
31: TypestateTrack (𝑝𝑎𝑡ℎ, 𝐺′); 
32: foreach 𝑖𝑛𝑠𝑡′ in Next(𝑖𝑛𝑠𝑡) do
33:  if 𝑖𝑛𝑠𝑡′ not in 𝑝𝑎𝑡ℎ then
34:  𝑝𝑎𝑡ℎ. 𝑝𝑢𝑠ℎ 𝑖𝑛𝑠𝑡′ ;
35:  HandleINST(𝑝𝑎𝑡ℎ, 𝐺′);
36:  𝑝𝑎𝑡ℎ. 𝑝𝑜𝑝();
37:  end if
38: end foreach

define: HandleFUNC(𝑓𝑢𝑛𝑐, 𝑝𝑎𝑡ℎ, 𝐺) 
9: 𝑖𝑛𝑠𝑡 := GetEntryOfFunc(𝑓𝑢𝑛𝑐);

10: 𝑝𝑎𝑡ℎ. 𝑝𝑢𝑠ℎ(𝑖𝑛𝑠𝑡);
11: HandleINST(𝑝𝑎𝑡ℎ, 𝐺);
define: HandleCALL(𝑣 = 𝑓𝑢𝑛𝑐(𝑣1, … , 𝑣𝑛), 𝑝𝑎𝑡ℎ, 𝐺) 
12: foreach 𝑖 in 1. . 𝑛 do
13:  𝑎𝑟𝑔𝑖 := GetArg(𝑓𝑢𝑛𝑐, 𝑖);
14:  𝐺′ := HandleMOVE(𝑎𝑟𝑔𝑖 = 𝑣𝑖, 𝐺);
15:  UpdateAliasGraph(𝑝𝑎𝑡ℎ) := 𝐺′;
16:  𝐺 := 𝐺′;
17: end foreach
18: HandleFUNC(𝑓𝑢𝑛𝑐, 𝑝𝑎𝑡ℎ, 𝐺);
19: 𝑟𝑒𝑡 := GetReturnValue(𝑓𝑢𝑛𝑐);
20: 𝐺′ := HandleMOVE(𝑣 = 𝑟𝑒𝑡, 𝐺);
21: return 𝐺′;

define: AnalyzeCode() 
1: foreach 𝑓𝑢𝑛𝑐 in OS code without a caller function do
2:  𝐺 := ∅;
3:  𝑝𝑎𝑡ℎ := ∅;
4:  foreach variable in the OS code do
5:  insert a new node representing it into G;
6:  end foreach
7:  HandleFUNC(𝑓𝑢𝑛𝑐, 𝑝𝑎𝑡ℎ, 𝐺);
8: end foreach

Figure 6: Pseudocodes of our path-based alias analysis.

avoid repeatedly handling loops and recursive calls, if a successive
instruction is already handled in the path (with each loop and
recursion unrolled only once), the analysis does not handle it again
(Lines 32-38).

A function call is regarded as several MOVE operations between
formal parameters and corresponding actual parameters (Lines 12-
17), because they are aliases after passing parameters. Similarly, the
return instruction of a callee function is also regarded as a MOVE
operation (Lines 19-20).

Example 2. We illustrate our path-based alias analysis with the
simplified code in Figure 3, and present its alias graph for some
important program points in Figure 7 (isolated nodes are omitted).
Each node represents a set of aliased variables, and the nodes with
bold edge are related to the branch condition at Line 4. We exploit
func:v to represent the variable v in the function func. Through
a GEP(foo:r=&foo:p->s) and LOAD(foo:t=*foo:r) operations,
our analysis gets alias graph at Line 3 and infers that foo:t and
*(&foo:p->s) are aliases. For the branch statement at Line 4, our
analysis copies the alias graph into two branches. For example in the
path (𝐿𝑖𝑛𝑒2, 𝐿𝑖𝑛𝑒3, 𝐿𝑖𝑛𝑒4, 𝐿𝑖𝑛𝑒5, 𝐿𝑖𝑛𝑒10, 𝐿𝑖𝑛𝑒11, 𝐿𝑖𝑛𝑒12), the function
bar is called at Line 5, and our analysis uses a MOVE(bar:p=foo:p)
operation to pass related parameters. With a GEP(bar:r=&bar:p->s)
and a LOAD(bar:t=*bar:r) operations, our analysis gets the alias
graph at Line 11; and through a LOAD(bar:a=*bar:t) operation,
our analysis gets the alias graph at Line 12.

Referring to existing static approaches [5, 52, 64], to avoid spend-
ing too much time on analyzing loops and recursive calls, our alias

foo:p foo:r foo:t
s *

Line 5

Line 11

Line 7

Line 3

Line 12

Line 4Line 4

COPY

* *foo:p foo:r foo:t foo:a
s

foo:p foo:r foo:t
s *

LOAD

foo:p
bar:p

foo:r foo:t

foo:p
bar:p

foo:r
bar:r

foo:t
bar:t

*

*

*

s

s

*foo:p
bar:p

foo:r
bar:r

foo:t
bar:t

bar:a
s

foo:p foo:r foo:t
s *

1. foo(p) {
2.     r = &(p->s);
3. t = *r;
4. if (!t)
5. bar(p);
6. else
7. a = *t;
8. }

9. bar(p) {
10.     r = &(p->s);
11. t = *r;
12. a = *t;
13. }

Example source code

MOVE

GEP & LOAD

LOAD

Figure 7: Example of illustrating path-based alias analysis.

analysis unrolls each loop and recursive call just once (Lines 32-38),
which can miss some alias relationships in the two cases, causing
soundness loss of bug detection.

3.2 Alias-Aware Typestate-Tracking Method
Static typestate analysis defines some “typestates” to describe pos-
sible states that each variable can reach, and then tracks typestate
transitions according to related operations to detect bugs. But there
are lots of variables and code paths in OS code, so tracking types-
tates for each variable and synchronizing typestates among aliased
variables are quite expensive, especially when detecting multiple
types of bugs. We consider merging aliased variables that may refer
to the samememory location, so that their typestates can be merged
to reduce analysis costs. Based on this consideration, we propose
an alias-aware typestate-tracking method using the alias relation-
ships produced by our path-based alias analysis, to detect multiple
types of OS bugs. This method is represented as TypestateTrack in
Figure 6.

Our method is field-sensitive, by regarding each field of a data
structure as a separate variable in typestate tracking. It also con-
siders alias relationships involving data structure fields, due to the
field sensitivity of our alias analysis. Moreover, our method is inter-
procedural and flow-sensitive, but neglects the feasibility of code
paths, and thus it can report some false bugs. To filter out these false
bugs, we use a path-validation method, which will be introduced
in Section 3.3.

A typestate property for each variable can be specified as a finite
state machine (FSM) [32].

Definition 2. An FSM for detecting a specific type of bug is
described as FSMtype =

〈∑
, S, S0, 𝛿, Stype

〉
, where:

• ∑
is the set of instructions that change the state.

• S is the set of all possible states.
• S0 is the initial state.
• 𝛿 is a set of state-transition functions that map the present
state and an instruction to a new state.

• Stype is the final state which means a possible bug is detected
by TypestateTrack.

For each code path, all aliased variables identified by our alias
analysis share the same state in the FSM.
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Table 2: FSMs of null-pointer dereferences (NPD), uninitialized-variable accesses (UVA) and memory leaks (ML).

FSMNPD = ⟨∑, S, S0 , 𝛿, SNPD ⟩ FSMUVA = ⟨∑, S, S0 , 𝛿, SUVA ⟩ FSMML = ⟨∑, S, S0 , 𝛿, SML ⟩
S = {S0 , SNON , SN , SNPD } S = {S0 , SUI , SI , SUVA } S = {S0 , SNF , SF , SML }
SNON . The alias set is non-NULL.
SN . The alias set is NULL.

SUI . A local variable or a heap object is uninitialized.
SI . A local variable or a heap object is initialized.

SNF . A heap object is not freed.
SF . A heap object is freed.∑

= {ass_null, br_null, br_nonnull, deref } ∑
= {ass_const, load, alloc, use} ∑

= {malloc, free, ret }
ass_null. Assign NULL to a pointer.
br_null. Execute a branch where the pointer is NULL.
br_nonnull. Execute a branch where the pointer is non-NULL.
deref . Dereference a pointer.

ass_const. Assign a constant to a local variable or a heap object.
load. Load a value from an uninitialized heap object or an uninitialized data
structure filed.
alloc. Load a local variable.
use. Access a variable or a heap object.

malloc. Allocate a heap object.
free. Free a heap object.
ret. Execute a return instruction.

deref

br_nonnull deref
*

SNON

deref /
br_nonnull

ass_null /
br_null

br_nonnull
ass_null / 
br_null

ass_null / br_null

SNS0 SNPD

use

ass_const use
*

SI

*
ass_const

load / alloc

SUIS0 SUVA

load / alloc

ret
*

SF
free

malloc

SNFS0 SML

retret

Definition 3. Function mapping an alias set AS to a correspond-
ing state S in the FSM is defined as Sm : AS→ S, whereAS represents
the alias sets in the code path.

Our typestate-tracking method and alias analysis are performed
at the same time (Line 31 in Figure 6). For each instruction in the
code path, after the alias graph G is updated, our method first finds
the alias set AS of the variable handled by the analyzed instruc-
tion, with G, and gets the current state Scurr = Sm (AS). Then, our
method changes the state of related alias set, according to Scurr and
the analyzed instruction. For different types of bugs, their FSMs
can be separately maintained at the same time during typestate
tracking.

At present, we have implemented three FSMs to detect null-
pointer dereferences (NPD), uninitialized-variable accesses (UVA)
and memory leaks (ML), respectively, because these three types of
bugs are common and dangerous in OSes. The definitions of these
FSMs are shown in Table 2. We use state-transition diagram to
illustrate each state-transition function 𝛿 and use “∗” to represent
any input to FSM.

Example 3. We use an example in Figure 8 to illustrate how to
simplify typestate tracking with alias relationships. Without alias
relationships, to detect null-pointer dereference in Figure 7, typestate
analysis maintains states for foo:t and bar:t separately, and trans-
fers its state to NULL when analyzing the variable bar:t at Line 11,
because the state of its aliased variable foo:t is NULL. The related
state transitions are shown in Figure 8(a). Instead, with alias rela-
tionships, our method merges states of aliased variables to simplify
typestate tracking. In Figure 8, our method maintains just one state
for the alias set of foo:t and bar:t, because these variables become
aliases and share the same state. The related alias-aware state transi-
tions are shown in Figure 8(b). Comparing Figure 8(a) and Figure 8(b),
we find that our method can effectively simplify state transitions and
thus reduce the cost of typestate tracking, by using alias relationships.

Due to unsoundness of our alias analysis when handling loops
and recursive calls, our typestate-tracking method may miss the
opportunity to merge the states of some aliased variables. More-
over, without validating code-path feasibility in alias analysis, our
typestate-tracking method may mistakenly merge the states of
two variables referring to different memory locations, which can
introduce inaccuracy of bug detection.

(b) Alias-aware typestate analysis

(a) Traditional typestate analysis

SNS0 SNPD
foo:t
bar:t

br_null
(Line 4)

SNS0foo:t

deref
(Line 12)

SNS0 SNPDbar:t

sync (Line 11)

br_null
(Line 4)

deref
(Line 12)

Figure 8: Bug-related state transitions in Figure 7.

3.3 Alias-Aware Path-Validation Method
On the one hand, we observe that the code paths of possible bugs
often occupy a small proportion of all code paths in the whole OS
code, and thus validating all code paths are redundant in bug detec-
tion. On the other hand, we observe that all aliased variables should
satisfy the same constraints in a given code path, and thus these
variables can be represented by the same symbol in the SMT solver,
to reduce the cost of path constraint solving. Based on the two ob-
servations, we propose an alias-aware path-validation method using
the alias relationships produced by our path-based alias analysis, to
efficiently filter out false bugs reported by our typestate-tracking
method. Besides, this method is field-sensitive, by regarding each
field of a data structure as a separate variable in path validation. Due
to the field sensitivity of our alias analysis, this method considers
alias relationships involving data structure fields in path validation.

In our method, constraints in path validation are simplified by
mapping an alias set not a variable to one symbol in an SMT solver.
During path validation, if the symbol does not exist, our method
creates a new symbol for the alias set.

Definition 4. Function mapping an alias set AS to a symbol X
in an SMT solver is defined as Xm : AS→ X, where AS are alias sets
in the code path, and X are SMT symbols.

To validate the code-path feasibility of each possible bug, our
method translates the instructions in its code path to SMT con-
straints, and then uses the SMT solver Z3 to compute whether
these constraints can be satisfied. Specifically, for each instruction,
our method first gets the alias set of the handled variable, then finds
the symbol of this alias set, and finally builds constraints for this
symbol with instruction information.

Definition 5. Function to get the symbol X for the variable v is
defined as R(v) = Xm (AS) where v is in the alias set AS.

Specifically, when building constraints, we formulate each in-
struction in the following tiny source language:
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Table 3: Translation rules of expressions and instructions.

Source SMT constraints
(a) Translation of L-values
Tvar (v) where v ∈ ⟨var ⟩ R (v)

(b) Translation of expressions
Texp (c) where c ∈ ⟨const ⟩ c
Texp (var) where v ∈ ⟨var ⟩ Tvar (v)
Texp

(
e1opbe2

)
Texp (e1) opbTexp (e2 )

Texp (opue1) opuTexp (e1)

(c) Translation of statements
Tstm (var := e) Tvar (var) == Texp (e)
Tstm (brt (e)) Texp (e) == 1
Tstm (brf (e)) Texp (e) == 0

• ⟨exp⟩ ::= ⟨const⟩ | ⟨var⟩ | ⟨exp⟩1 opb ⟨exp⟩2 |opu ⟨exp⟩
• ⟨stm⟩ ::= ⟨var⟩ = ⟨exp⟩ |brt (e) |brf (e)

In the source language, expr represents an expression like a+1;
const represents a constant value; var represents a variable; opb
represents a binary operator; opu represents a unary operator; stm
represents a statement such as v=a+1; brt (e) represents a condition
to execute a control-flow branch when e is evaluated to be true (e.g.,
if(e)); brf (e) represents the condition when e is evaluated false.
Translation rules from a source language to SMT constraints are
shown in Table 3.

Code: 
1. void func(p, q) {
2.     if (q == NULL)
3. p->f = 0;
4. t = p;
5. ......
6. if (t->f != 0)
7. *p = *q;
8. }

Implicit constraints:
R'(p)==R'(q)    R'(p->f)==R'(q->f)
R'(p)==R'(t)    R'(p->f)==R'(t->f)
R'(q)==R'(t)    R'(q->f)==R'(t->f)
Explicit constraints:
R'(q)==NULL  \\ Line 2
R'(p->f)==0  \\ Line 3 
R'(t)==R'(p)  \\ Line 4
R'(t->f)!=0    \\ Line 6

Alias sets at Line 6:
{t, p}, {t->f, p->f}, {q}

Final constraints:
R(q)==NULL   \\ Line 2
R(p->f)==0     \\ Line 3 
R(t->f)!=0       \\ Line 6

(a) Source code (b) Original constraints (c) Simplified constraints





Figure 9: Example of simplifying SMT constraints.

If the conjunction of these SMT constraints is satisfiable, the
validated code path is considered to be feasible, and thus the corre-
sponding possible bug is identified to be real.

Example 4. We illustrate how to use alias relationships to sim-
plify SMT constraints, using an example in Figure 9 (type infor-
mation is omitted). To validate the code path of a possible null-
pointer dereference (𝐿𝑖𝑛𝑒2, 𝐿𝑖𝑛𝑒3, 𝐿𝑖𝑛𝑒4, 𝐿𝑖𝑛𝑒6, 𝐿𝑖𝑛𝑒7) in Figure 9(a),
we need to translate the instructions in the code path to SMT con-
straints. Suppose the function R’() maps a variable to an SMT sym-
bol without considering alias relationships, for each assignment like
p1=p2, we need to add an explicit constraint R’(p1)==R’(p2). If p1
and p2 are data structure pointers of the same type, each of their
field f should be equal. Thus, we need to add an implicit constraint
R’(p1)==R’(p2)→R’(p1->f)==R’(p2->f), where → means im-
plication. Figure 9(b) shows the constraints without considering alias
relationships. Instead, by considering alias relationships, if two vari-
ables p1 and p2 becomes aliases, our method maps them to the same
SMT symbol (Definition 5), causing that R(p1)==R(p2) is natu-
rally satisfied, and thus this explicit constraint can be dropped. If
two variables p1 and p2 become aliases, their fields like p1->f and
p2->f can be also inferred to be aliases, causing that these fields
are mapped to the same SMT symbol and implicit constraints like
R(p1)==R(p2)→R(p1->f)==R(p2->f) are naturally satisfied, and
thus these implicit constraints can be also dropped. Figure 9(c) shows

the alias sets used for constraint simplification and the simplified
constraints. In this example, R(p->f)==0 and R(t->f)!=0 cannot be
satisfied at the same time, so this possible bug is identified to be false.

Due to unsoundness of our alias analysis when handling loops
and recursive calls, our method may lose some constraints about
multiple executions of loop body and recursive function, and thus
can cause false positives in bug detection.

4 FRAMEWORK
Based on the three key techniques in Section 3, we develop a novel
path-sensitive and alias-aware typestate analysis framework named
PATA, to effectively detect multiple types of OS bugs.We implement
PATA using Clang 9.0 [16]. Figure 10 shows the architecture of
PATA, which has three phases:

PATA

Code AnalyzerClang Compiler Bug Filter

LLVM
Bytecode

Possible Bugs

Information 
Collector

Function 
Information

Bug Reports

OS source 
code

Figure 10: PATA architecture.

P1: Code compilation and code-information collection. The
Clang compiler compiles the OS source code into LLVM bytecode,
and then the information collector scans each LLVM bytecode file to
record function information (including the position of each function
definition and function name, etc.) in a database. Such information
is used in subsequent code analysis for inter-procedural analysis
across source files.
P2: Code analysis. The code analyzer uses our path-based alias
analysis and alias-aware typestate-tracking method to analyze
LLVM bytecode files, without validating path feasibility. The anal-
ysis starts at the entry of each function without explicit callers,
and handles each code path in top-down analysis. When a function
returns, the analysis combines the information of its code paths
to mitigate path explosion. Finally, the analysis produces possible
bugs with their code paths.
P3: Bug filtering. For a given real bug, there may be multiple code
paths between its two problematic instructions, and thus many re-
peated bugs can be reported. To drop repeated bugs, for a new
possible bug, the bug filter checks whether its problematic instruc-
tions are identical to those of any already detected bug. If so, this
possible bug is considered to be repeated and thus dropped. Then,
the bug filter uses our alias-aware path-validation method to drop
false bugs.
False positives. PATA can still report false bugs due to the limita-
tions of current implementation. For example, PATA unrolls each
loop and recursive call just once, so it can report false bugs in-
volving multiple executions of loop body and recursive function.
Moreover, PATA does not handle non-constant array indexes, data
dependence across functions with a variable number of parameters
or concurrency of memory accesses, so it can report false bugs
related to these aspects.
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5 EVALUATION
We evaluate PATA on the Linux kernel and three open-source IoT
OSes (Zephyr [86], RIOT [59] and TencentOS-tiny [73]). Table 4
shows their information, and source code lines are counted by
CLOC [17]. For the Linux kernel, we use the kernel configuration
allyesconfig to enable all kernel code for the x86-64 architecture. For
each IoT OS, many source files are architecture-specific, so we have
tried our best to compile as many source files as possible, by tuning
available compilation configurations. We run the evaluation on a
regular x86-64 desktop with eight processors and 16GB memory.

Table 4: Information about the four checked OSes.

OS Version Source files (*.c) LOC
Linux kernel 5.6 28,260 14.2M
Zephyr 2.1.0 1,669 383K
RIOT 2020.04 4,402 1,575K
TencentOS-tiny Commit 23313e 1,497 572K

5.1 Bug Detection
We run the three checkers implemented in Section 3.2 to detect null-
pointer dereferences (NPD), uninitialized-variable accesses (UVA)
and memory leaks (ML). Each checker is implemented with just
100-200 lines of code. We manually check all the bugs found by
PATA. Table 5 shows the results.
Code analysis. PATA in total analyzes 10.3M lines of code in 18.4
K source files. The remaining 6.5M lines of code in 17.4K source
files are not analyzed, as they are not enabled by the compilation
configurations used by us.We believe that PATA can findmore bugs,
if these source files can be compiled with proper configurations.
Moreover, compared to alias-unaware typestate tracking and path
validation, PATA drops 49.8% typestates and 87.3% SMT constraints,
which effectively reduces the complexity and costs of static analysis.
Finally, PATA drops 54.7 K false bugs using our path-validation
method, which effectively improves bug-detection accuracy.
Found bugs. PATA reports 797 bugs, and a PhD student spent 12
hours on checking the bug reports. This time usage is smaller than
what we expected, as some reported bugs have similar root causes or
patterns and they can be checked together. Finally, we identify that
574 of them are real bugs, including 463 null-pointer dereferences,
90 uninitialized-variable accesses and 21 memory leaks. Thus, the
overall false positive rate of bug detection is 28%. In our experience,
reporting too many bugs within a short time is not recommended
by the Linux community. Thus, similar to existing works [4, 5], we
randomly selected 200 real bugs in Linux kernel and all the 120
real bugs in IoT OSes, and sent them to OS developers. 206 of them
(138 in Linux, 23 in Zephyr, 23 in RIOT and 22 in TencentOS-tiny)
have been confirmed. We are still waiting for the response of the
remaining bugs. Besides, 13 of our patches that fix 46 bugs have
been applied in the OS code, and the 160 remaining confirmed bugs
have been fixed by OS developers according to our bug reports.
Bug distribution. We classify the 574 real bugs found by PATA, by
the category of the OS part containing the bug. Figure 11 shows the
bug distribution. We find that drivers have 75% of the real bugs in
the Linux kernel, and third-party modules have 68% of the real bugs
in the three IoT OSes. Indeed, many Linux drivers and all third-party
IoT OS modules are developed by third-party organizations not the

ThirdParty: 
68% 

Subsystem: 
25% 

Others: 
7% 

Drivers: 
75% 

Others: 
9% 

(a) Linux (b) IoT OSes

Figure 11: Distribution of the found bugs.

OS community, and their code quality are generally worse than that
of other OS parts [20]. In addition, we find that network modules
and filesystems have 16% of the real bugs in the Linux kernel, and
subsystem modules (including network stacks, bluetooth modules,
etc) have 25% of the real bugs in the three IoT OSes. As these OS
parts are commonly-used and security-critical, their bugs are often
dangerous and received serious attention by OS developers after
we reported them.

5.2 False Positives
PATA still reports 223 false bugs in the four OSes, and these false
bugs are introduced for three main reasons:

First, PATA is array-insensitive and thus inaccurate in handling
array elements with non-constant array indexes. For example, PATA
identifies that two array elements array[i+1] and array[j] are
different, even if the statement “j=i+1” is placed before the accesses
to them, because their access paths in our alias analysis are different.

Second, although PATA uses Z3 to validate path feasibility, it still
errs in handling some complex cases, such as complex arithmetic
conditions and data dependence across multiple functions. PATA
also fails to check loop conditions for multiple iterations and thus
can report false bugs involving loops.

Finally, PATA neglects the concurrency of memory accesses.
For example, the initialization and access to a variable can be re-
spectively performed in two concurrently-executed functions with
synchronization, which guarantees that the initialization is always
performed before the access. But when analyzing the access, PATA
may fail to find any initialization to this variable before the ac-
cess due to thread unawareness, and thus it can report a false
uninitialized-variable access.

5.3 Case Studies of Bugs Found by PATA
Figure 12 shows several real bugs found by PATA, and these bugs
have been confirmed and fixed by OS developers.

Null-pointer dereferences in Linux MCDE driver. In Fig-
ure 12(a), the variable d->mdsi is compared with NULL at Line 1035
in the function mcde_dsi_bind, namely this variable can be NULL.
Then, the function mcde_dsi_start is called at Line 1064. In this
function, d->mdsi is dereferenced at Lines 724, 752, 778 and 787,
which can cause null-pointer dereferences. To fix these bugs, the de-
veloper drops the call to mcde_dsi_start when d->mdsi is NULL.

Null-pointer dereference in Zephyr IP network stack. In
Figure 12(b), the variable dst_addr is compared with NULL at Line
1361 in the function context_sendto, namely this variable can
be NULL. At Line 1361, when dst_addr is NULL and msghdr is not
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Table 5: Analysis results of the four OSes.

Description Linux Zephyr RIOT TencentOS-tiny Total

Code analysis

Source files (analyzed/all) 16,237/28,260 634/1,669 1,134/4,402 398/1,497 18.4K/35.8K
Source code lines (analyzed/all) 9,539K/14,223K 254K/383K 374K/1,575K 180K/572K 10.3M/16.8M
Typestates (alias-aware/unaware) 22,016M/43,981M 249M/437M 699M/1,261M 51M/81M 23.0G/45.8G
SMT constraints (alias-aware/unaware) 238M/1,903M 1,302K/3,926K 3,685K/11,014K 1,050K/2,071K 244M/1,920M

Bug detection

Dropped repeated bugs 18,354K 220K 143K 111K 18.8M
Dropped false bugs 48,472 3,884 1,514 873 54.7K
Found bugs (NPD/UVA/ML) 627 (508/102/17) 30 (27/2/1) 106 (98/5/3) 34 (14/13/7) 797 (647/122/28)
Real bugs (NPD/UVA/ML) 454 (365/76/13) 24 (24/0/0) 67 (62/2/3) 29 (12/12/5) 574 (463/90/21)
Confirmed bugs (NPD/UVA/ML) 138 (94/31/13) 23 (23/0/0) 23 (20/0/3) 22 (5/12/5) 206 (142/43/21)

Time usage 33h01m 44m 82m 22m 35h29m

FILE: TencentOS-tiny/kernel/core/include/tos_sys.h
182. inline int knl_object_verify(TYPE *knl_obj, ...) {
183.     return knl_obj->type == type;  // Unsafe access!
184. }

FILE: zephyr-2.1.0/subsys/net/ip/net_context.c

1335. static int context_sendto(...) {
 ......

1361.  if (!dst_addr && !msghdr && ...)  // dst_addr can be NULL
1362.  return -EDESTADDRREQ;

 ......
1421.  ll_addr = (struct sockaddr_ll *)dst_addr;    // Alias

 ......
1432.  if (ll_addr->sll_ifindex < 0)    // Unsafe dereference!

 ......
1629. }

(b) Null-pointer dereference in Zephyr

FILE: TencentOS-tiny/osal/posix/pthread.c
499. __API__ int pthread_create(...) {

 ......
554. stackaddr = tos_mmheap_alloc(...); // Uninitialized

 ......
564. the_ctl = (pthread_ctl_t *)stackaddr;  // Alias

 ......
585. kerr = tos_task_create(&the_ctl->ktask);

 ......
629. }

(d) Uninitialized-variable access in TencentOS-tiny

FILE: TencentOS-tiny/kernel/core/tos_task.c
82. __API__ k_err_t tos_task_create(TYPE *task, ...) {

 ......
100. TOS_OBJ_TEST_RC(task, ...);

 ......
150. }

FILE: TencentOS-tiny/kernel/core/include/tos_klib.h
84. #define TOS_OBJ_TEST_RC(obj, ...)  \
85      __MACRO_BEGIN  \
86. if (knl_object_verify(&obj->knl_obj, ...)

 ......
89. __MACRO_END  \

FILE: RIOT-2020.04/cpu/native/syscall.c

267. char *make_message(...) {
 ......

272. if ((message = malloc(size)) == NULL)  // Memory allocation
273. return NULL;

 ......
277. n = vsnprintf(...);
278. if (n < 0)
279. return NULL;  // No free!

 ......
291. }

(c) Memory leak in RIOT(a) Null-pointer dereferences in Linux

FILE: linux-5.6/drivers/gpu/drm/mcde/mcde_dsi.c

710. static void mcde_dsi_start(struct mcde_dsi *d) {
 ......

724. if (d->mdsi->mode_flags & ...)  // Unsafe dereference!
725. val |= DSI_MCTL_HOST_EOT_GEN;

 ......
752. if (d->mdsi->lanes == 2)  // Unsafe dereference!
753. val |= DSI_MCTL_PHY_CTL_LANE2_EN;

 ......
778. if (d->mdsi->lanes == 2)  // Unsafe dereference!
779. val |= DSI_MCTL_MAIN_EN_DAT2_EN;

 ......
787. if (d->mdsi->lanes == 2)  // Unsafe dereference!
788. val |= DSI_MCTL_MAIN_STS_DAT2_READY;

 ......
813. }

1018. static int mcde_dsi_bind(...) {
 ......

1035.  if (d->mdsi)  // d->mdsi can be NULL
1036.  mcde_dsi_attach_to_mcde(d);

 ......
1064.  mcde_dsi_start(d);

 ......
1111.  dev_info(dev, "initialized MCDE DSI bridge\n");
1112.  return 0;
1113. }

Figure 12: Example bugs found by PATA.

NULL, the function does not return at Line 1362 and continues exe-
cution. Then, dst_addr is assigned to ll_addr at Line 1421, and
thus ll_addr can be NULL. After that, ll_addr is dereferenced at
Line 1432, causing a null-pointer dereference. To fix this bug, the de-
veloper refactored the source code in the function context_sendto
to handle the case that dst_addr is NULL.

Memory leak in RIOT syscall-handling component. In Fig-
ure 12(c), the variable message points to a memory area allocated
by calling malloc at Line 272 in the function make_message. Then,
it returns due to an exception at Line 279, without releasing the
memory area pointed by message, causing a memory leak. To fix
this bug, the developer calls free(message) before the return state-
ment at Line 279, to free the allocated memory in error handling.

Uninitialized-variable access in TencentOS-tiny thread li-
brary. In Figure 12(d), the variable stackaddr points to an unini-
tialized memory area allocated by tos_mmheap_alloc at Line 554
in the function pthread_create. After that, stackaddr is assigned
to the_ctl at Line 564, and the function tos_task_create is
called with &the_ctl->ktask at Line 585. Finally, via two function
calls and a macro, the variable (the_ctl->ktask).knl_obj.type
is accessed at Line 183 in the function knl_object_verify. But
the memory area pointed by the_ctl is uninitialized, causing an
uninitialized-variable access here. To fix this bug, the developer
calls memset to initialize the memory area pointed by stackaddr
after calling tos_mmheap_alloc.

5.4 Sensitivity Analysis
The core idea of PATA is to exploit alias relationships to enhance
typestate analysis for OS code. To validate the value of this idea, we

Table 6: Sensitivity analysis results in Linux.

Description PATA-NA PATA
Found Bugs (NPD/UVA/ML) 620 (424/108/88) 627 (508/102/17)
Real Bugs (NPD/UVA/ML) 194 (168/15/11) 454 (365/76/13)
Time usage 8h19m 33h01m

Table 7: Bugs found by three additional checkers in Linux.

Bug type Double lock/unlock Array index underflow Division by zero Total
Found bugs 22 23 7 52
Real bugs 18 20 5 43

implement a non-alias version of PATA, named PATA-NA, which
does not compute alias relationships in typestate analysis. Table 6
shows the results in Linux.

PATA-NA finds 620 bugs in Linux and 194 of them are real,
achieving a false positive rate of 69% that is higher than PATA.
These 194 real bugs are all found by PATA, and PATA additionally
finds 260 bugs missed by PATA-NA. Moreover, PATA spends less
time than PATA-NA, by merging typestates and SMT constraints
according to alias relationships. The results indicate that using alias
relationships in typestate analysis indeed improves the accuracy
and efficiency of bug detection.

5.5 Generality to Other Bug Types
Benefiting from typestate analysis, PATA can conveniently de-
tect different types of OS bugs with different checkers. To vali-
date such generality, we also implement three additional check-
ers to detect other three common types of OS bugs, including
double-lock/unlock, array-index-underflow and division-by-zero
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bugs. Each of these checkers is implemented according to its bug-
related FSM and using just 100-200 lines of code, like the three
checkers used in Section 5.1. Table 7 shows the results of these
additional checkers in Linux.

With these additional checkers, PATA additionally finds 52 bugs,
and we identify that 43 of them are real bugs, including 18 double-
lock/unlock, 20 underflow and 5 division-by-zero bugs. The results
indicate the generality of PATA to different types of OS bugs.

6 COMPARISON TO EXISTING APPROACHES
We experimentally compare PATA to seven state-of-the-art static
analysis approaches, including Cppcheck [24] (v2.3), Coccinelle [55]
(v1.0.8), Smatch (v0.5.0) [65], CSA (checker-279) [25], Facebook
Infer [39] (v1.1.0), Saber [69] (v2.1) and SVF [67] (v2.1). Cppcheck,
Coccinelle, Smatch, CSA and Infer are open-source static analysis
tools that can detect multiple types of bugs; Saber is a path-sensitive
static analysis tool to detect memory leaks; SVF is a static value-
flow analysis framework that contains a flow-sensitive and inter-
procedural points-to analysis, which can be used to detect bugs.

For Cppcheck, Smatch, CSA and Infer, we use them to detect the
three types of bugs detected by PATA in Section 5.1; For Coccinelle,
we just use its existing semantic patches [61] to detect null-pointer
dereferences, as we do not find any existing semantic patch to detect
uninitialized-variable accesses or memory leaks; For Saber, we use
it to detect memory leaks. For SVF, we replace the path-based alias
analysis with the SVF’s flow-sensitive points-to analysis in PATA,
to implement a new tool named SVF-Null to detect null-pointer
dereferences. To evaluate Saber and SVF-Null, we use WLLVM [76]
to build the whole Linux kernel into a single LLVM bytecode file
as SVF wiki [70] suggests, and use SVF-Null to perform analysis
on the bytecode file. But we fail to build the three IoT OSes using
WLLVM due to many compilation errors, and thus we use Saber
and SVF-Null to analyze bytecode files generated by Clang for
each single source file. Note that Smatch and CSA report many
compilation errors when checking IoT OSes, as their compilation
scripts are unsuitable to the Makefiles of IoT OSes. Similarly, Infer
reports many compilation errors when checking the Linux kernel.
Besides, because the whole Linux kernel has lots of pointers, Saber
and SVF consume too much memory when checking its code, and
finally abort due to insufficient memory. Similarly, several recent
works [31, 64] also find that Saber and SVF can consume too much
memory or time when checking large-scale programs. For the above
reasons, we use Smatch and CSA to just check the Linux kernel, and
use Infer, Saber and SVF to just check the three IoT OSes. Table 8
shows the detailed comparison results of these approaches:

(1) 27 real bugs found by Cppcheck, 6 real bugs found by Coc-
cinelle, 110 real bugs found by Smatch, 196 real bugs found by CSA,
15 real bugs found by Infer, 2 bugs found by Saber and 4 bugs found
by SVF-Null are also found by PATA. But 25 real bugs found by
Cppcheck and 2 real bugs found by Coccinelle are missed by PATA.
Indeed, the source files containing the 27 missed bugs are not com-
piled with the compilation configurations used in our evaluation,
so these source files are not checked by PATA; while Cppcheck and
Coccinelle check source files without code compilation. We believe
if these source files can be compiled with proper configurations,
the 27 missed bugs can be also found by PATA.

(2) PATA finds 328 real bugs missed by the seven tools (note
that some bugs found by these tools are identical) with a lower
false positive rate. Due to lacking inter-procedural analysis or alias
analysis, Cppcheck, Coccinelle and Smatch miss complex bugs
involving multiple functions or alias relationships. Moreover, the
three tools do not validate code path feasibility, and thus they report
many false bugs caused by infeasible code paths. Though CSA, Infer,
Saber and SVF-Null compute points-to information to handle alias
relationships, their points-to analyses fail to model heap objects for
pointer parameters of module interface functions and miss complex
alias relationships in specific code paths, and thus these tools miss
many real bugs related to pointer parameters and report many false
bugs involving complex alias relationships. In addition, Infer and
Saber fail to handle some complex path conditions especially those
related to return values of callee functions, and thus they also report
some false bugs.

(3) PATA spends more time than Cppcheck, Coccinelle, Smatch,
CSA, Saber and SVF-Null in code analysis, as it computes alias rela-
tionships more precisely and performs path-sensitive analysis. Even
so, PATA finds many more real bugs, so we believe that the effec-
tiveness of its bug detection outweighs in its time overhead. PATA
spends less time than Infer, due to its efficient analysis techniques,
such as alias-aware typestate tracking and path validation.
Other approaches.Besides the above seven open-source approaches,
there are some other OS-bug detection approaches that detect spe-
cific bug types or are closed-source. For example, UBITect [87]
targets use-before-initialization bugs in OS code, and it performs
source-sink analysis and searches for a feasible path between the
source (allocation site) and the sink (use site) using symbolic exe-
cution; while PATA first performs alias-aware typestate analysis
without checking code-path feasibility, and then it uses alias re-
lationships to efficiently check the code-path feasibility of each
possible bug. MLEE [75] focuses on early-exit paths and detects
memory leaks by comparing these paths to normal paths in OS
code; while PATA considers more code paths and can detect mem-
ory leaks via typestate tracking. Moreover, when identifying alias
relationships, both UBITect and MLEE use points-to analysis that
can introduce some inaccuracy, while PATA performs path-based
alias analysis that can be more accurate. Coverity [21] is a commer-
cial static analysis tool that can detect different kinds of bugs. Linux
and Zephyr developers use it to check their code before each OS
version is released [22, 23]. Thus, we believe that the bugs found
by PATA in these two OSes should be missed by Coverity.

7 DISCUSSION
Benefiting other analyses with alias analysis. We believe that
the path-based alias analysis in PATA can be used to boost the
performance of other types of analysis. For example, in symbolic
execution [12, 56, 81], aliased variables can be mapped into a single
symbol with this alias analysis, to merge many constraints among
these variables, which can simplify constraint solving with no or
small precision loss. In model checking [11, 53], aliased variables in
a program can be mapped into a single variable in the model, to re-
duce the state space of the checked model, which can mitigate state
explosion problem. In API-rule checking [84], alias information can
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Table 8: Comparison results of the four OSes.

OS bug detection
Cppcheck

(NPD/UVA/ML)
Coccinelle

(NPD)
Smatch

(NPD/UVA/ML)
CSA

(NPD/UVA/ML)
Infer

(NPD/UVA/ML)
Saber
(ML)

SVF-Null
(NPD)

PATA
(NPD/UVA/ML)

Linux
Found bugs 324 (157/154/13) 35 423 (194/204/25) 1,151 (848/283/20) - OOM OOM 627 (508/102/17)
Real bugs 51 (44/6/1) 6 110 (87/19/4) 196 (156/40/0) - OOM OOM 454 (365/76/13)
Time usage 3h34m 13h40m 17h15m 19h32m - OOM OOM 33h01m

Zephyr
Found bugs 8 (1/7/0) 0 - - 44 (16/28/0) 4 14 30 (27/2/1)
Real bugs 1 (1/0/0) 0 - - 1 (1/0/0) 0 0 24 (24/0/0)
Time usage 24s 69s - - 197m 16s 54s 44m

RIOT
Found bugs 49 (14/33/2) 2 - - 54 (26/26/2) 9 11 106 (98/5/3)
Real bugs 6 (6/0/0) 2 - - 10 (8/1/1) 2 1 67 (62/2/3)
Time usage 57s 201s - - 166m 5s 67s 82m

TencentOS-tiny
Found bugs 63 (2/36/25) 2 - - 46 (24/22/0) 8 3 34 (14/13/7)
Real bugs 3 (2/1/0) 0 - - 4 (3/1/0) 0 3 29 (12/12/5)
Time usage 14s 46s - - 32m 13s 23s 22m

help to detect hard-to-find API misuses (e.g., caused by improper
or wrong uses of arguments) involving complex alias relationships.
Limitations of PATA. PATA still has several limitations in detect-
ing OS bugs. For example, PATA does not handle function-pointer
calls, and thus it cannot find bugs whose bug-trigger paths passing
through indirect function calls. Thus, we plan to introduce existing
function-pointer analysis [51, 54] in PATA. In addition, To reduce
the complexity of analyzing loops and recursive calls in our static
analysis, we unroll each loop and recursive call just once, which can
also cause unsoundness with reduced the accuracy of our bug detec-
tion. Thus, we plan to adapt some loop-oriented approaches [33, 68]
to handle complex cases involving loops and recursions.

8 RELATEDWORK
8.1 Static Analysis
Alias analysis. Many existing approaches [1, 9, 10, 26, 35–37, 48,
49, 67, 82, 83] perform points-to analysis and identify two pointers
to be aliases if their points-to sets have variables in common. These
approaches require all pointers to be initialized, so the points-to
sets of these pointers are not empty. To compute alias relationships
without points-to information, some approaches [7, 28, 38] perform
alias analysis based on access paths. Kastrinis et al. [43] design an
efficient data structure named alias graph to represent access path,
for flow-sensitive but path-insensitive must-alias analysis of Java.
Typestate analysis. Some approaches [2, 29, 34, 46, 74] use types-
tate analysis to detect various types of bugs in applications. Hallem
et al. [34] design a typestate analysis framework named xgcc with
a flexible language named metal to define typestate transitions for
bug detection. However, xgcc neglects alias relationships, so it is
limited in tracking typestates involving complex alias relationships.
To solve this problem, some approaches [27, 32, 77, 80] identify alias
relationships with flow-insensitive pointer analysis. However, they
introduce many false positives due to identifying imprecise alias
relationships. Several approaches [3, 78] use precise on-demand
backward-alias analysis to improve the accuracy of typestate anal-
ysis, but they can only detect specific bugs about variable tainting.
Value-flow analysis. Some approaches [31, 63, 64, 69] use value-
flow analysis to detect bugs in applications. They exploit def-use
chains to build value-flow graphs (VFG) [14, 69], and detect bugs
by solving source-sink problems on the graphs. To improve the
accuracy of bug detection, these approaches compute points-to in-
formation to identify alias relationships. But many OS functions do
not have explicit caller functions, so their pointer parameters have

incomplete points-to information, causing that points-to analysis
can miss many alias relationships. As a result, these approaches can
have many false positives and negatives when checking OS code.
Generic bug detection in OS code. Several static tools [8, 24,
25, 30, 55, 65] can detect different types of bugs in OS code. But
their alias analysis is imprecise (due to flow insensitivity) or even
lacked, and most of them (except CSA [25]) are path-insensitive
in code analysis. Thus, these tools often report false positives and
miss many real bugs.
Advantages of PATA. First, different from existing alias analysis,
PATA identifies alias relationships in the OS code according to
control-flow paths and access paths, without points-to information.
Second, PATA is path-sensitive to effectively reduce false positives.
Finally, PATA strategically uses alias relationships to reduce the
complexity and costs of typestate tracking and code-path validation.

8.2 Symbolic Execution
Some approaches [12, 15, 19, 47, 57, 58] use symbolic execution to
check the OS code. KLEE [12] is a well-known symbolic execution
engine implemented with LLVM. It explores possible execution
paths with constraint solving and generates concrete test cases
for each path. But symbolic execution is often time consuming in
analyzing large programs, because it needs to explore numerous
code paths and solve their path constraints with an expensive SMT
solver. To reduce time cost of solving path constraints, PATAmerges
SMT constraints involving aliased variables. Moreover, PATA only
validates the feasibility of the code paths for possible bugs, instead
of all possible code paths during static analysis.

8.3 Dynamic Analysis
Dynamic analysis has beenwidely used to detect OS bugs at runtime.
Some approaches [20, 44, 60, 71] use coverage-guided fuzzing to test
infrequently-executed code, by automatically mutating and generat-
ing system calls according to code coverage. Some approaches [6, 18,
41, 62] perform software fault injection to test error handling code,
by deliberately corrupting the return values of kernel-interface calls.
By using exact runtime information about OS execution, dynamic
analysis can effectively reduce false positives in bug detection. How-
ever, dynamic analysis requires substantial test cases to achieve
high code coverage and reduce false negatives, and it also degrades
OS performance caused by runtime monitoring.
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9 CONCLUSION
In this paper, we develop a novel path-sensitive and alias-aware
typestate analysis framework named PATA, to effectively detect
OS bugs. We have evaluated PATA on the Linux kernel and three
popular IoTOSes to detect three common types of bugs (null-pointer
dereferences, uninitialized-variable accesses and memory leaks).
We also experimentally compare PATA to seven state-of-the-art
static analysis approaches, and PATA finds many real bugs missed
by these approaches. In the evaluation, PATA in total finds 574 real
bugs with a low false positive rate of 28%, and 206 of these real
bugs have been confirmed by OS developers.
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