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Abstract—Context-free language (CFL) reachability is a fun-
damental framework for formulating program analyses. CFL-
reachability analysis works on top of an edge-labeled graph by
deriving reachability relations and adding them as labeled edges
to the graph. Existing CFL-reachability algorithms typically
adopt a single-reachability relation derivation (SRD) strategy,
i.e., one reachability relation is derived at a time. Unfortunately,
this strategy can lead to redundancy, hindering the efficiency of
the analysis.

To address this problem, this paper proposes PEARL, a multi-
derivation approach that reduces derivation redundancy for tran-
sitive relations that frequently arise when solving reachability re-
lations, significantly improving the efficiency of CFL-reachability
analysis. Our key insight is that multiple edges involving tran-
sitivity can be simultaneously derived via batch propagation of
reachability relations on the transitivity-aware subgraphs that
are induced from the original edge-labeled graph. We evaluate
the performance of PEARL on two clients, i.e., context-sensitive
value-flow analysis and field-sensitive alias analysis for C/C++.
By eliminating a large amount of redundancy, PEARL achieves
average speedups of 82.73x for value-flow analysis and 155.26x
for alias analysis over the standard CFL-reachability algorithm.
The comparison with POCR, a state-of-the-art CFL-reachability
solver, shows that PEARL runs 10.1x (up to 29.2x) and 2.37x (up
to 4.22x) faster on average respectively for value-flow analysis
and alias analysis with less consumed memory.

Index Terms—CFL-Reachability, transitive relations

I. INTRODUCTION

Many program analysis problems, such as interprocedural
data flow analysis [1], [2], program slicing [3], shape anal-
ysis [4], and pointer analysis [5]–[12], can be formulated as
context-free language (CFL) reachability problems [13]. The
CFL-reachability problem extends standard graph reachability
to an edge-labeled graph. The CFL-reachability solving algo-
rithm has a (sub)cubic time complexity with respect to the
number of nodes in the edge-labeled graph [14]. Researchers
have developed different performance optimization techniques,
including reducing the graph size via pre-processing [15]–
[20], applying summary-based techniques for caching [1], [3],
[21], and adopting efficient data processing techniques to im-
prove scalability [22], [23]. However, despite all these efforts,
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CFL-reachability algorithms can still suffer from significant
performance loss due to redundancy when deriving all-pair
reachability relations.

During CFL-reachability solving, an X-reachability relation
between source node u and sink node v (i.e., v is X-reachable
from u) is explicitly represented as an X-edge u

X−→ v
in the edge-labeled graph. We use the terms X-edge and
X-reachability relation interchangeably, and they are both
denoted as u

X−→ v. A CFL-reachability problem can be
converted into a set constraint problem [21], [24]. Let v’s X-
reachability relations be a set R(X, v) = {u | u X−→ v}. Given
a production rule X ::= Y Z, a Z-edge u

Z−→ v specifies
the constraint R(Y, u) ⊆ R(X, v). Such a constraint can be
solved by propagating u’s Y -reachability relations via Z-edge
u

Z−→ v to produce v’s X-reachability relations. Essentially,
the edge derivation process of CFL-reachability can be viewed
as propagating reachability relations along the edge-labeled
graph until a fixed point is reached. During propagation, each
newly derived reachability relation (a source-to-sink path) is
summarized as a labeled edge and added to the graph, making
this reachability relation explicit. Existing CFL-reachability
algorithms typically adopt a single-reachability relation deriva-
tion (SRD) strategy, i.e., one reachability relation is derived at
a time, which can cause redundancy, hindering the efficiency
of the analysis.

Figure 1 shows an example to illustrate the reachability
relation propagations and their redundancy. A context-free
grammar (CFG) is given in Figure 1a, where production rules
X ::= x and A ::= a suggest that an X-reachability relation
and A-reachability relation can be created by a single x-edge
and a-edge, respectively, which results in the transformation
from input graph G0 into G1 in Figure 1b. The other two
productions A ::= AA and X ::= XA in the CFG indi-
cate that A-reachability and X-reachability relations can be
propagated via an A-edge to produce new A-reachability and
X-reachability relations, respectively.

In Figure 1c, Node 1 is omitted from the graph for sim-
plicity, and the A-edge 2

A−→ 4 (the wavy line) is derived by
propagating reachability relation 2

A−→ 3 via A-edge 3
A−→ 4.



A ::= AA | a
X ::= XA | x

(a) Context-free grammar
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(b) G0 is the input graph, and G1 is transformed
from G0 by applying X ::= x and A ::= a.

2

0

3 4

X
A A

X X

A
(c) Derivation via propagating reachability relations.
Propagating 0

X−→ 2 along the path 2
A−→ 3

A−→ 4 derives
0

X−→ 3 and 0
X−→ 4 (two dashed lines). Alternatively,

0
X−→ 4 can also be derived by propagating 0

X−→ 2 via
the edge 2

A−→ 4 (the wave line).
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(d) The Single-reachability Relation Derivation (SRD) manner. 0 X−→ 2 and
1

X−→ 2 are separately propagated to Nodes 3 and 4. The dashed lines in G2 and G3

show the propagation processes of 0 X−→ 2 and 1
X−→ 2, respectively.
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(e) Our multi-derivation approach. 0 X−→ 2 and 1
X−→

2 are packed and propagated together to Nodes 3 and
4. The dashed lines denote the derived edges via the
two propagations.

Fig. 1: Motivating Example

Besides, propagating reachability relation 0
X−→ 2 along path

2
A−→ 3

A−→ 4 derives two new reachability relations 0
X−→ 3

and 0
X−→ 4 (two dashed lines). An alternative derivation of

0
X−→ 4 is to propagate reachability relation 0

X−→ 2 via A-edge
2

A−→ 4.
Motivation. There are two types of derivation redundancy

during reachability propagation, as follows.

• Repetitive Derivation Redundancy (RDR). Consider the
reachability relation between source node 0 and sink node
4 in Figure 1c, reachability relation 0

X−→ 2 is propagated
to Node 4 twice: (1) one via path 2

A−→ 3
A−→ 4 with

two edges; (2) the other one via edge 2
A−→ 4 (the wavy

line). Therefore, there are three propagations for deriving
X-reachability relations, and the number doubles when
Node 1 is considered. This repetitive derivation causes
redundancy since 0

X−→ 4 is derived more than once.
• Redundancy due to SRD. Consider the reachability re-

lations between source nodes 0,1 and sink nodes 3,4,
reachability relations 0 X−→ 2 and 1

X−→ 2 in Figure 1d are
separately propagated along the path 2

A−→ 3
A−→ 4. G2

and G3 in Figure 1d summarize the propagation processes
of reachability relations 0 X−→ 2 and 1

X−→ 2, respectively.
In this derivation strategy by existing CFL-reachability
analysis, only one reachability relation is derived in one
propagation. In total, there are four propagations for
deriving X-reachability relations (four dashed lines in G2

and G3), and two of them are duplicate derivations.

The standard algorithm [24] exhibits both types of redun-
dancy. The RDR in this example is due to the unawareness of
transitivity introduced by production A ::= AA. Edge 2

A−→ 4

(derived using A ::= AA) is the shortcut of path 2
A−→ 3

A−→ 4,
thus causing a repetitive derivation. A recent CFL-reachability
solver POCR [25] adopts a spanning tree model to eliminate

RDR for transitive relations. Unfortunately, POCR still suffers
from redundancy due to SRD since it follows the propagation
process presented in Figure 1d.

Goal and Challenge. This paper aims to boost the effi-
ciency of CFL-reachability analysis by reducing both types
of redundancy for transitive relations that arise frequently
when solving reachability relations. The challenge is how to
effectively identify and eliminate redundancy while efficiently
propagating reachability relations, in a large and complex
graph with new edges being dynamically introduced during
CFL-reachability analysis.

Insight and Solution. Figure 1e outlines the key idea of
our multi-derivation approach. Reachability relations 0

X−→ 2

and 1
X−→ 2 are packed together (i.e., {0, 1} X−→ 2), and then

propagated via 2
A−→ 3, with two new reachability relations

0
X−→ 3 and 1

X−→ 3 simultaneously derived. Multi-derivation
aims to infer multiple reachability relations in one propagation,
which is achieved by batch propagation of packed reachability
relations. The propagation via 3 A−→ 4 also follows this scheme.
Our approach is precision-preserving and needs only two
propagations (two dashed lines in Figure 1e) to derive identical
X-reachability relations with respect to the standard algorithm,
which requires six propagations.

In the above example, A ::= AA is called fully transitive
production and X ::= XA is called partially transitive
production. Both fully and partially transitive productions can
benefit from our multi-derivation approach, which is based on
two key observations:

• A fully transitive production (e.g., A ::= AA) derives
shortcut edges (e.g., 2

A−→ 4) that can introduce RDR.
To reduce repetitive derivations, a transitivity-aware sub-
graph is induced from the edge-labeled graph by exclud-
ing shortcut edges for each fully transitive production.

• Instead of separate propagation, a fully/partially transitive



production can be efficiently solved by batch propagation
of reachability relations on the transitivity-aware sub-
graph, with multiple reachability relations derived in one
propagation, hence reducing the duplicate derivations due
to SRD.

We propose PEARL, a novel multi-derivation approach to
solving transitivity efficiently for all-pairs CFL-reachability
analysis. We have evaluated PEARL using two popular static
analysis clients, i.e., context-sensitive value-flow analysis [26],
[27] and field-sensitive alias analysis for C/C++ [7]. Experi-
mental results demonstrate that PEARL is over 82.73x and
155.26x faster than the standard CFL-reachability algorithm
for value-flow analysis and alias analysis, respectively. We
have also compared PEARL with a state-of-the-art CFL-
reachability solver POCR [25]. The results show that PEARL
achieves speedups of 10.1x (up to 29.2x) for value-flow
analysis and 2.37x (up to 4.22x) for alias analysis over POCR.

To summarize, this paper makes the following contributions:
• We propose a multi-derivation approach that employs

a batch propagation technique for fast deriving reacha-
bility relations, thereby boosting the efficiency of CFL-
reachability analysis. Our approach eliminates repetitive
derivations introduced by the standard CFL-reachability
algorithm, while also reducing the redundancy which
cannot be eliminated by the state-of-the-art solver POCR.

• We present an efficient algorithm to solve both fully
and partially transitive productions in a multi-derivation
manner by propagating reachability relations in batch on
transitivity-aware subgraphs that are induced from the
original edge-labeled graph.

• we apply our technique to two popular static analysis
clients for C/C++, context-sensitive value-flow analysis
and field-sensitive alias analysis with extensive exper-
iments. The empirical results show that our approach
can eliminate a large portion of derivation redundancy
and significantly improve the performance of CFL-
reachability analysis.

The remainder of this paper is structured as follows. Sec-
tion II introduces the background. Section III briefly illustrates
the core idea of our approach with a motivating example. We
detail our approach in Section IV and evaluate our tool PEARL
in Section V. Section VI surveys related work and Section VII
concludes this paper.

II. BACKGROUND

This section briefly reviews the basic background on CFL-
reachability and provides related definitions.

A. CFL-reachbility

We start with the basic notations which will be used
throughout the paper. Let CFG = (Σ, N, P, S) be a context-
free grammar over an alphabet Σ comprised of non-terminals
N and terminals T , with the start symbol S ∈ N , and a set of
production rules P . Let G(V,E) be a directed graph, where V
and E are the vertex set and edge set, respectively. Each edge
in G is labeled by a symbol from Σ = T ∪N , e.g., the edge

Algorithm 1: The standard CFL-reachability algorithm
Input: Normalized CFG = (Σ, N, P, S),

edge-labeled directed graph G = (V,E)
Output: all reachable pairs in G

1 Function StandardCFL(CFG , G):
2 Init();
3 Solve(CFG , G);

4 Procedure Init():
5 add E to W ;
6 for each production X ::= ε ∈ P do
7 for each node v ∈ V do
8 if v X−→ v /∈ E then
9 add v

X−→ v to E and W

10 Procedure Solve(CFG , G):
11 while W ̸= ∅ do
12 pop an edge u

Y−→ v from W ;
13 for each production X ::= Y ∈ P do
14 if u X−→ v /∈ E then
15 add u

X−→ v to E and W

16 for each production X ::= YZ ∈ P do
17 for outgoing edge v

Z−→ w from node v do
18 if u X−→ w /∈ E then
19 add u

X−→ w to E and W

20 for each production X ::= ZY ∈ P do
21 for incoming edge w

Z−→ u to node u do
22 if w X−→ u /∈ E then
23 add w

X−→ u to E and W

u
X−→ v denotes the edge from Node u to Node v labeled by

X . Each path in G defines a word over Σ by concatenating
the labels of the edges on the path in order. A path is an
X-path if its word can be derived from X ∈ N via one or
more productions in P . An X-path u −→ ... −→ v implies that
an X-reachability relation holds between Node u and Node
v (i.e., v is X-reachable from u). CFL-reachability solving
is to make such reachability relation explicit by inserting an
X-edge u

X−→ v into the edge-labeled graph.
The Standard Algorithm. In the literature, CFL-

reachability is solved by the standard dynamic programming
algorithm [24] given in Algorithm 1. The algorithm requires
the CFG to be normalized in such a way that the right-
hand side of each production has at most two symbols, i.e.,
productions are in the form X ::= Y Z, X ::= Y or X ::= ε.
Let W denote a worklist. Algorithm 1 first initializes the
worklist with all original edges (line 5) and then adds all self-
referencing edges (v X−→ v) produced by productions X ::= ε



into the graph and worklist (Lines 6-9).
Next, the procedure SOLVE is invoked to iteratively derives

new edges until no more edges can be deduced (W = ∅).
Given an edge u

Y−→ v, an edge u
X−→ v is derived using the

production rule X := Y (lines 13 - 15). In addition, each
outgoing Z-edge of Node v (lines 16 - 19) and incoming Z-
edge (lines 20 - 23) of Node u is examined to derive new
X edges via the productions X ::= Y Z and X ::= ZY ,
respectively. All newly derived edges are added to the graph
and to the worklist for further processing.

The standard algorithm exhibits a single-reachability re-
lation derivation style, i.e., each reachability relation (e.g.,
u

Y−→ v) of Node v is separately handled in distinct iterations
(Line 12).

Graph Representation. Given an X-edge u
X−→ v, we say

Node u is an X-predecessor of Node v, and Node v is an
X-successor of Node u. Consequently, the X-predecessor set
of Node v, denoted as R(X, v) = { u | u X−→ v ∈ E },
represents all incoming X-edges of Node v (used at Line 21
in Algorithm 1), and the X-successor set of node v, denoted
as S(X, v) = { u | v X−→ u ∈ E }, represents all outgoing
X-edges of Node v (used at Line 17 in Algorithm 1). The
X-predecessor set of Node v is also called the X-reachability
relation set of Node v.

B. Transitive Production Rule

Definition 1. (Fully Transitive Production). A fully transitive
production is in the form A ::= AA. Relation A is a fully
transitive relation if and only if it is in a fully transitive
production.

Definition 2. (Partially Transitive Production). A left (right)
transitive production is in the form X ::= XA (X ::= AX)
where relation A is fully transitive and X ̸= A. A partially
transitive production is either left transitive or right transitive.

Relation X is a partially transitive relation if and only
if it is on the left side of a partially transitive production.
Accordingly, edges of fully (partially) transitive relations are
called fully (partially) transitive edges. We classify fully
transitive edges into two categories [25] by the first production
that generates it:

• Secondary edge. A fully transitive edge is a secondary
edge if it is first derived via a fully transitive production;

• Primary edge. A fully transitive edge is a primary edge
if it is first derived via a production that is not fully
transitive.

For convenience, fully transitive relations (edges) and partially
transitive relations (edges) are collectively denoted as transi-
tive relations (edges).

Definition 3. (Transitive Production Rule). A transitive pro-
duction rule is either fully transitive or partially transitive. Ac-
cordingly, other production rules are defined as non-transitive
production rules.

Transitive production rules have a nice property, e.g., pro-
duction X ::= XA suggests that X-reachability relations can
be propagated via A-edges while preserving their edge label
X .

C. The POCR Approach

A recent solver POCR [25] addresses the repetitive deriva-
tion redundancy (RDR) by utilizing a spanning tree model for
each fully transitive production. Specifically, given the graph
G1 in Figure 1b, for A-reachability relation, three spanning
trees are constructed:
(1) 2

A−→ 3
A−→ 4 rooted from Node 2;

(2) 3
A−→ 4 rooted from Node 3;

(3) a tree rooted from Node 4 without children.
Given the reachability relation 0

X−→ 2, the spanning tree
rooted from Node 2 is traversed to derive two reachability
relations, 0 X−→ 3 and 0

X−→ 4.
There are two reasons why we do not choose this spanning

tree as the underlying representation of our approach. First,
the A-transitivity information of each node is maintained in-
dividually in distinct spanning trees, and hence X-reachability
relations of different root nodes can not be packed together.
Second, the reachability information is redundantly preserved,
e.g., 3

A−→ 4 is copied into at least two spanning trees
mentioned above, which can be expensive in terms of time and
space when A-reachability relations are dense, as confirmed
in our experiments (Section V).

III. PEARL IN A NUTSHELL

In this section, we briefly illustrate how our multi-derivation
approach can effectively reduce derivation redundancy.

A. Transitivity-aware Propagation Graph

For each fully transitive relation A, our approach maintains
a propagation graph, denoted as PG(A).

Definition 4. (Propagation Graph). Given an edge-labeled
Graph G(V,E), the propagation graph PG(A) for a fully
transitive relation A is the subgraph induced from G with
primary A-edges, i.e., PG(A) = (V ′, E′), where edge set E′

consists of all the primary A-edges in E, and vertex set V ′

consists of the endpoints of E′.

PG(A) is transitivity-aware since it implicitly preserves all
A-reachability relations in the original graph G [28], [29].
The spanning tree model of POCR [25] is not suitable for our
batch propagation technique because it maintains transitivity
for each node separately.

B. Solving Transitive Productions via Multi-derivation

Edge derivations using fully and partially transitive pro-
ductions are transformed into computing transitive closures of
propagation graphs. For example, given a partially transitive
production X ::= XA, an A-edge u

A−→ v specifies the
constraint R(X,u) ⊆ R(X, v) [21], [24], which is solved
by our multi-derivation approach via propagating reachability
relations in batch on PG(A).



Next, we highlight how transitive production X ::= XA is
solved for our motivating example in Figure 1.
(1) Propagation Graph Construction. Given the graph G1

in Figure 1b, PG(A) is constructed by selecting only
primary A-edges, i.e., the A-path 2

A−→ 3
A−→ 4.

(2) Packing Reachability Relations. Two reachability re-
lations 0

X−→ 2 and 1
X−→ 2 are packed together as

{0, 1} ⊆ R(X, 2).
(3) Multi-derivation via Batch Propagation. Edges 2

A−→ 3

and 3
A−→ 4 indicate constraints R(X, 2) ⊆ R(X, 3) and

R(X, 3) ⊆ R(X, 4), respectively, which are solved by
propagating reachability {0, 1} ⊆ R(X, 2) in batch along
edges 2

A−→ 3 and 3
A−→ 4 in PG(A).

Reducing Derivation Redundancy. By excluding the sec-
ondary edge 2

A−→ 4 from PG(A), we avoid solving the
trivial constraint R(X, 2) ⊆ R(X, 4) that is already implied
in two constraints R(X, 2) ⊆ R(X, 3) and R(X, 3) ⊆
R(X, 4), thereby eliminating repetitive derivations. Moreover,
our multi-derivation approach solves production X ::= XA
via batch propagation of X-reachability relations on PG(A),
thus reducing the redundancy due to single-reachability rela-
tion derivation.

IV. THE METHODOLOGY

As shown in Algorithm 2, PEARL maintains non-transitive,
fully transitive, and partially transitive relations in 3 distinct
worklists (W , FSet , and PSet) and solves them in different
manners. Given an input grammar CFG = (Σ, N, P, S),
CFGnt = (Σ ,N ,Pnt ,S ) denotes the grammar modified from
CFG with all transitive production rules excluded. The initial-
ization phase (Line 2) of PEARL is the same as the standard
algorithm (Algorithm 1)

In each loop iteration, non-transitive production rules
are firstly solved in the standard single-reachability relation
derivation (SRD) manner by applying the same SOLVE pro-
cedure on the modified grammar CFGnt (Lines 5 and 7).
After this step, no more new edges can be derived from non-
transitive production rules. Next, partially and fully transi-
tive productions are solved in a multi-derivation manner by
functions PROPPTR and PROPFTR, respectively (Lines 8,9):
new transitive relations derived from non-transitive production
rules (INIT at Line 2 and SOLVE at line 5) are propagated
in the propagation graphs to discover all other transitive
relations. After this stage, no more new edges can be derived
from transitive production rules. However, the newly derived
transitive edges may enable derivations via non-transitive
production rules. Hence, at the end of each iteration, newly
derived transitive edges (created by PROPPTR at Line 8 and
PROPFTR at Line 9) in the current iteration are pushed to the
worklist W (Line 11), triggering the next iteration of the loop.

A. Multi-derivation via Propagating Partially Transitive Re-
lations

Unifying Partially Transitive Productions. Without loss
of generality, we assume that X ̸= A for a given production

Algorithm 2: Overall algorithm of PEARL

Input: Normalized CFG = (Σ, N, P, S),
edge-labeled directed graph G = (V,E)

Output: all reachable pairs in G
1 Function PearlCFL(CFG ,G):
2 Init(); // Lines 4-9 in Algo. 1
3 CFGnt ←− CFG without transitive productions;
4 while W ̸= ∅ do
5 Solve(CFGnt , G); // Lines 10-23 in Algo. 1
6 add derived partially transitive edges to PSet ;
7 add derived fully transitive edges to FSet ;
8 PropPTR(PSet); // Algo. 3
9 PropFTR(FSet); // Algo. 4

10 PSet .clear(); FSet .clear();
11 add new transitive edges to W ;

X ::= XA and a fully transitive production will be given in
an explicit form of A ::= AA. We have A ::= A A (A is
fully transitive) ⇐⇒ A ::= AA (A is fully transitive), and
right transitive production X ::= AX can be transformed into
left transitive production X ::= X A by reversing the original
production [4]. By adopting this “reversing” transformation,
right transitive productions are handled in the same fashion as
left transitive productions.

For a relation X and its inverse relation X , X-successors
and X-predecessors mean exactly the same thing. Hence, we
only need to maintain X-predecessor set and X-predecessor
set to represent both relations X and X . Therefore, when
compared to the standard graph representation introduced
in Section II-A, inverse relations introduced by reversing
transformation do not incur memory overhead.

Propagating Partially Transitive Relations. Algorithm 3
solves partially transitive productions in a multi-derivation
manner by batch propagation of reachability relations on the
propagation graphs. Our implementation adopts the popu-
lar difference propagation technique [30]–[32]. In particular,
R(X , v) and Rnew (X , v) contains “old” X-reachability rela-
tions and “new” X-reachability relations of Node v, respec-
tively. Besides, Pgt denotes the production rule set transformed
from the original P by translating right transitive productions
into left transitive ones. To avoid confusion with the edge
worklist W in Algorithm 1, we use NW to denote node
worklist. The algorithm involves two steps (Lines 2-5):
(1) Packing Reachability Relations. Given a newly derived

reachability relation u
X−→ v, Node u is added to

Rnew (X , v), and Node v is added to Rnew (X , u) (Lines
2-4). Both Nodes u and v are then pushed into the NW
(Lines 23-25).

(2) Propagating Reachability Relations. The procedure PRO-
PRRS (Line 6) propagates new reachability relations
in batch along the propagation graph using a standard
worklist algorithm [32].

In PROPRRS, a Node u is selected from NW at each



Algorithm 3: Multi-derivation via Propagating par-
tially transitive relations

Input: the set of partially transitive relations in PSet
Output: partially transitive relations generated via

multi-derivation
1 Function PropPTR(PSet):
2 for each edge u

X−→ v ∈ PSet do
3 PackRR(X,u, v);
4 PackRR(X, v, u);

5 PropRRs();

6 Procedure PropRRs():
7 while NW ̸= ∅ do
8 pop node u from NW ;
9 for each partially transitive relation X do

10 R(X , u)←− R(X , u) ∪ Rnew (X , u);
11 ∆R(X , u)←− Rnew (X , u);
12 Rnew (X , u)←− ∅;
13 for partially transitive production

X ::= XA ∈ Pgt do
14 for u

A−→ v ∈ PG(A) do
15 DiffProp(X , ∆R(X , u), v);

16 for each node v ∈ ∆R(X , u) do
17 PackRR(X ,u, v);

18 Procedure DiffProp(X , srcSet, v):
19 Rnew (X , v)←− Rnew (X , v) ∪ (srcSet \ R(X , v));
20 if Rnew (X , v) changes then
21 add v to NW ;

22 Procedure PackRR(X , u, v):
23 Rnew (X , v)←− Rnew (X , v) ∪ {u};
24 if ∃ partially transitive production

X ::= XA ∈ Pgt then
25 add v to NW ;

iteration (Line 8), then Rnew (X , u) is merged into R(X , u)
and flushed (Lines 10-12). Since a partially transitive relation
X may be involved in multiple transitive productions, the al-
gorithm visits each left transitive production X ::= XA (Line
13). Then ∆R(X , u) is propagated via each outgoing primary
A-edge of Node u (Lines 14-15) by invoking DIFFPROP.
Nodes receiving new reachability relations are then pushed
into NW (Lines 19-21). In this way, all reachability relations
in ∆R(X , u) are simultaneously processed in one propagation,
while the single-reachability relation derivation strategy in
Algorithm 1 separately processed each X-reachability relation
of Node u in distinct iterations.

The reversed relation X can be also partially transitive. In
this case, new X-reachability relations (created at Line 11) are
translated into X-reachability relations (Lines 16-17), which
will trigger the propagation of X-reachability relations.

X ::= XA1

X ::= XA2

(a) Context-free grammar

0 1 2 3
A1 X

X

X

X

X

A2

(b) Edge-labeled graph

Fig. 2: Relations X and X are both partially transitive

Example 1. Given the CFG in Figure 2a and the input graph in
Figure 2b, let both relations A1 and A2 be fully transitive. We
show the derivation process of edge 0

X−→ 3, which involves
two partially transitive productions X ::= XA1 and X ::=
XA2, as follows.

(1) Propagate reachability relation 2
X−→ 1 via edge 1

A1−−→ 0

to derive 2
X−→ 0.

(2) Generate X-reachability relation. 2 X−→ 0 =⇒ 0
X−→ 2

(the wavy line).
(3) Propagate reachability relation 0

X−→ 2 via edge 2
A2−−→ 3

to derive 0
X−→ 3.

B. Multi-derivation via Propagating Fully Transitive Rela-
tions

Algorithm 4 updates propagation graphs on the fly and
solves fully transitive productions in a multi-derivation manner
via batch propagation of fully transitive reachability relations.
For each new primary A-edge u

A−→ v, PG(A) is updated
(Line 3) by including the edge if u /∈ R(A, v). Consequently,
we propagate partially transitive relations R(X , u) to Node v
(Line 5-6), by invoking function DIFFPROP in Algorithm 3.

In UPDATEPG, both propagation graphs PG(A) and

PG(A) are updated by including u
A−→ v and v

A−→ u, respec-
tively (Lines 9,10). Next, the transitive closures of the PG(A)
and PG(A) are updated by propagating the new reachability
relations introduced by u

A−→ v (i.e., {u} ∪ R(A, u) at Line
11) in a depth-first manner (Line 12). Only new reachability
relations are propagated along PG(A) (Lines 14-18) to avoid
redundant work. The reverse relation A is updated together
when updating A-edges (Lines 19-20).

Eager Propagation. The procedure DFS eagerly propa-
gates A-reachability relations to compute the transitive clo-
sures of PG(A). Alternatively, A-reachability relations can
be iteratively propagated using a worklist as in Section IV-A.
However, in our earlier implementation, we observe that
iterative propagation of fully transitive relations introduces
redundant secondary edges in PG(A), causing performance
degradation. Let us consider the below example.

Example 2. There are three steps in Figure 3, with an inserted
edge (the dashed line) at each step, as follows.

• Step(a), insert 1 A−→ 2, we have {1} ⊆ R(A, 2).
• Step(b), insert 0 A−→ 1, we have {0} ⊆ R(A, 1). Addition-

ally, Node 2 is A-reachable from Node 0, but this infor-



Algorithm 4: Multi-derivation via Propagating fully
reachability relations

Input: the set of fully transitive relations in FSet
Output: fully transitive relations generated via

multi-derivation
1 Function PropFTR(FSet):
2 for each edge u

A−→ v ∈ FSet do
3 UpdatePG(A, u, v);
4 if u

A−→ v is added into PG(A) then
5 for each X ::= XA ∈ Pgt do
6 DiffProp(X,R(X,u), v); // Lines 18-21

in Algo. 3

7 Procedure UpdatePG(A, u, v):
8 if u /∈ R(A, v) then
9 add u

A−→ v to PG(A);

10 add v
A−→ u to PG(A);

11 srcSet ←− R(A, u) ∪ {u};
12 DFS(A, srcSet , v);

13 Procedure DFS(A, srcSet, u):
14 ∆R(A, u)←− srcSet \R(A, u);
15 if ∆R(A, u) ̸= ∅ then
16 R(A, u)←− R(A, u) ∪∆R(A, u);
17 for u

A−→ v ∈ PG(A) do
18 DFS(A,∆R(A, u), v);

19 for v ∈ ∆R(A, u) do
20 R(A, v)←− R(A, v) ∪ {u};

1

2
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1

2

A
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1

2
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Fig. 3: Iterative propagation for production A ::= AA

mation is not explicit until we propagate {0} ⊆ R(A, 1)
to Node 2.

• Step(c), the secondary edge 0
A−→ 2 is mistakenly inserted

to PG(A) because 0 /∈ R(A, 2) (Line 8 in Algorithm 4).

Unlike iterative propagation (which tends to collect more
reachability relations before propagation), eager propagation
appears to propagate fewer reachability relations in one batch.
However, it keeps PG(A) sparse by excluding secondary
edges. In this example, eagerly propagating {0} ⊆ R(A, 1)

to Node 2 at step(b) avoids inserting 0
A−→ 2 into PG(A) at

step(c).
Memory Overhead of Propagation Graph. Given a fully

transitive relation A, when the CFL-reachability algorithm
reaches a fixed point, let EA the set of all A-edges. According

to Definition 4, EA is the transitive closure of PG(A),
hence edges in PG(A) are negligible when compared to EA.
Additionally, we construct PG(A) for relation A only when
relation A occurs in a partially transitive production or a fully
transitive production.

Insertion Order. Suppose that in Figure 3, the insertion
order is 0

A−→ 2, 0 A−→ 1 and 1
A−→ 2. Then even with eager

propagation, 0 A−→ 2 will cause redundant propagation but is
still kept in PG(A). Based on our experience, such redundant
edges only occupy a small portion, making them acceptable.
Besides, identifying such edges, i.e., online transitive reduc-
tion [28], would also incur additional costs.

Completeness. For illustration, Algorithm 3 and Algo-
rithm 4 do not consider the corner case when a reachability
relation is both fully transitive and partially transitive, e.g.,
relation X involves both fully transitive production X ::= XX
and partially transitive production X ::= XA. Although such
case rarely occurs in CFL-based program analyses, we propose
two options to complete our algorithm:

• Option 1: Rewrite the production X ::= XA to three new
productions: X ′ ::= X ′A, X ′ ::= X , and X ::= X ′,
which introduces additional X ′-edges.

• Option 2: Update PG(X) using new X-edges created via
X ::= XA (Line 11 in Algorithm 3); and propagate new
X-reachability relations created via X ::= XX (Line 14
in Algorithm 4) on PG(A).

C. Correctness

Theorem 1. PEARL yields the identical analysis result with
respect to the standard CFL-reachability algorithm (Algo-
rithm 1).

Proof sketch. PEARL differs from the standard algo-
rithm in handling transitive productions, manifest in three
forms: A ::= AA, X ::= XA and X ::= AX (transformed
into X ::= X A). Here we only prove the correctness of the
case X ::= XA, as the proof for other productions is similar.

Edge v0
X−→ vn is derived based on X ::= XA by Algo-

rithm 1 only if it is formed by an X-edge v0
X−→ v1 and an

A-edge v1
X−→ vn. We prove the correctness by two properties:

• Soundness. v1
X−→ vn is either a primary edge or sec-

ondary edge. Either way, vn is reachable from v1 in
PG(A) since all A-edges can be connected by one or
more primary edges. Therefore, by propagating reachabil-
ity relation v0

X−→ v1 along PG(A), v0
X−→ vn is derived

when PEARL obtains a fixed point.
• Completeness. PG(A) contains no spurious A-edges, so

a X-reachable path in PEARL is always X-reachable in
Algorithm 1.

Thus, PEARL and the standard algorithm computes identical
X-edge set for X ::= XA.

V. EVALUATION

We evaluate the performance of PEARL on two practi-
cal static analysis clients: context-sensitive value-flow anal-



A ::= A A | calli A reti | a | ε
(a) Context-free grammar

A ::= A A | CAi reti | a | ε
CAi ::= calli A

(b) Normalized grammar

Fig. 4: CFG for context-sensitive value-flow analysis

M ::= d V d
V ::= A V A | fi V fi | M | ε

A ::= A A | a M? | ε
A ::= A A | M? a | ε
(a) Context-free grammar

DV ::= d V
M ::= DV d
FVi ::= fi V

V ::= A V | V A| FVi fi | M | ε
A ::= A A | a M | a | ε
A ::= A A | M a | a | ε

(b) Normalized grammar

Fig. 5: CFG for field-sensitive alias analysis

ysis [26], [27] and field-sensitive alias analysis (extended
from [7]) for C/C++.

Baselines. The baseline of our experiment is a state-of-
the-art solver, POCR [25], which has been open-sourced
on Github1. For completeness, we have also included per-
formance statistics of the standard CFL-reachability algo-
rithm(Algorithm 1) for reference.

Implementation. We have implemented PEARL on top
of LLVM-14.0.0 and SVF [33], a popular static analysis
framework. All codes including baselines are compiled using
gcc-12.2.0 with the commonly used “-O2” optimization flag.

Our evaluation aims to answer the following research ques-
tions:

• (RQ1). How extensive are fully and partially transitive
edges in real-world CFL-reachability problems based on
the two clients?

• (RQ2). How about the overall performance of PEARL
when comparing it with existing approaches?

• (RQ3). Is propagation graph representation effective in
reducing repetitive derivation redundancy?

• (RQ4). Is batch propagation effective in reducing redun-
dancy due to single-reachability relation derivation?

A. Experimental Setup

Environment. All the experiments are conducted on a
machine with a Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz
and 1 TB of physical memory. We run the experiments with
a time limit of 6 hours and a memory limit of 512 GB.

Value-flow Analysis. We perform context-sensitive value-
flow analysis on the sparse value-flow graphs (SVFG) [26],
[27]. Figure 4a shows the context-free grammar (CFG) for
value-flow analysis, where calli and reti denote parame-
ter passing and return flow at the i-th callsite respectively,
a denotes an assignment, and A denotes an intraprocedu-
ral/interprocedural value flow. The analysis is also field-
sensitive since each field object is represented as a single node
in the SVFG. The normalized grammar is listed in Figure 4b.

Alias Analysis. The field-sensitive alias analysis for C++
is conducted on the program expression graph (PEG) [7].
Figure 5a presents the CFG, where a denotes an assignment
statement, d denotes a pointer dereference, fi denotes the ad-
dress of i-th field, A denotes a value flow, M denotes memory
alias, and V denotes value alias. PEG is bidirected [8], [34],

1https://github.com/kisslune/POCR
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Fig. 6: The percentages of (partially) transitive edges among
all inserted edges

i.e., for an edge u
X−→ v in PEG, there is a reverse edge v

X−→ u
in PEG. The normalized grammar is shown in Figure 5b.

Setup and Benchmarks. We use the benchmarks2 provided
by POCR [25]. These benchmarks contain SVFG and PEG of
10 SPEC 2017 C/C++ programs. Following POCR, SVFG and
PEG are preprocessed by cycle elimination [15] to collapse
cycles of a-edges and variable substitution [16] to compact
particular a-edges. In Table I and Table II, columns 2-5 list
the numbers of nodes and edges of SVFG and PEG before
and after offline preprocessing in each benchmark.

Evaluation of Correctness. The correctness of Theorem 1
is verified practically by the fact that PEARL and the standard
algorithm (if scalable) compute the same set of reachable pairs
in our experiments.

B. RQ1. Transitive Edges

Figure 6 illustrates the percentages of fully/partially transi-
tive edges among all edges added to the edge-labeled graph

2https://github.com/kisslune/CPU17-graphs

https://github.com/kisslune/POCR
https://github.com/kisslune/CPU17-graphs


TABLE I: Result of value-flow analysis. Column 2-5 gives the numbers of nodes and edges before and after preprocessing.
“SPU” stands for speedup. Column 9 shows the speedups of POCR over STD, and column 12 shows the speedups of PEARL
over POCR. The remaining columns give the time and memory consumption of evaluated algorithms. Time in seconds, memory
in GB. “-” means exceeding the time limit (6 hours).

id Before Prep. After Prep. STD POCR PEARL PEARL-WB
#Nodes #Edges #Nodes #Edges Time Mem Time SPU Mem Time SPU Mem Time Mem

cactus 544480 1007989 223046 616399 3408.36 3.46 604.10 5.6x 40.26 28.26 21.4x 4.74 38.53 4.73
imagick 574089 842509 165096 319141 583.71 0.43 59.13 9.9x 5.87 5.18 11.4x 0.74 6.33 0.73

leela 64466 89081 21711 40409 1.58 0.02 0.47 3.4x 0.19 0.16 2.9x 0.02 0.17 0.02
nab 55652 72366 15415 23736 55.51 0.50 16.59 3.3x 4.34 3.27 5.1x 0.32 5.99 0.32

omnetpp 664358 1857831 237854 1277123 229.26 1.08 15.49 14.8x 3.99 3.62 4.3x 0.53 3.57 0.51
parest 299718 407343 114099 199793 2.40 0.07 0.67 3.6x 0.19 0.38 1.8x 0.07 0.33 0.06

perlbench 697744 1662445 321778 1122795 16366.80 6.35 1520.19 10.8x 63.57 52.06 29.2x 10.42 106.18 10.39
povray 537775 1041687 213130 621400 5834.13 5.05 655.14 8.9x 55.84 43.91 14.9x 4.72 51.08 4.70
x264 207064 340217 66417 162595 194.16 0.70 34.77 5.6x 6.46 4.71 7.4x 0.67 7.06 0.66

xz 49395 62955 15072 23002 0.54 0.01 0.16 3.4x 0.06 0.06 2.7x 0.01 0.06 0.01

TABLE II: Result of alias analysis. Column 2-5 gives the numbers of nodes and edges before and after preprocessing. “SPU”
stands for speedup. Column 9 shows the speedups of POCR over STD, and column 12 shows the speedups of PEARL over
POCR. The remaining columns give the time and memory consumption of evaluated algorithms. Time in seconds, memory in
GB. “-” means exceeding the time limit (6 hours).

id Before Prep. After Prep. STD POCR PEARL PEARL-WB
#Nodes #Edges #Nodes #Edges Time Mem Time SPU Mem Time SPU Mem Time Mem

cactus 93557 212478 65232 153470 - - 191.27 - 11.62 96.59 2.0x 9.28 170.67 8.56
imagick 119314 301846 73499 196730 - - 554.13 - 42.55 334.76 1.7x 41.41 544.86 39.21

leela 22186 49748 14371 33326 312.28 0.31 3.40 91.8x 0.39 2.24 1.5x 0.36 3.30 0.33
nab 16261 34676 8794 19218 7.12 0.10 0.76 9.4x 0.10 0.18 4.2x 0.09 0.68 0.10

omnetpp 241916 509166 146049 311980 - - 410.79 - 17.96 195.77 2.1x 17.08 369.44 16.38
parest 117500 251436 67949 148286 - - 92.77 - 4.79 42.10 2.2x 4.69 87.67 4.40

perlbench 139183 348916 72231 192994 - - 1733.42 - 110.84 978.29 1.8x 80.30 1673.79 75.51
povray 76405 174258 45622 110732 14699.10 3.24 160.97 91.3x 6.60 58.64 2.7x 5.55 146.14 5.41
x264 60956 136352 40625 94110 1056.20 1.31 11.13 94.9x 1.05 3.39 3.3x 1.00 9.59 0.99

xz 12425 26468 7130 15228 6.67 0.05 0.42 15.9x 0.07 0.19 2.2x 0.07 0.38 0.07
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Fig. 7: Computational redundancy of value-flow analysis

during analysis. “VF:A Edge” represents A-edges in value-
flow analysis, while “AA:A Edge” and “AA:V Edge” represent
A-edges and V -edges in alias analysis, respectively.

Result. In value-flow analysis, fully transitive edges (A-
edges) account for a percentage of 84.51% on average and
there are no partially transitive edges. In alias analysis, fully
transitive edges (A-edges) represent a negligible proportion
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Fig. 8: Computational redundancy of alias analysis

(1.8%) while partially transitive edges (V -edges) occupy
57.01% of total added edges on average.

Discussion. As shown in columns 2-5 of Table I and II,
offline preprocessing has already pruned a large number of
fully transitive edges. However, transitive edges still make up
a significant proportion of all edges added during reachability
solving in value-flow analysis (84.51%) and alias analysis



(58.81%). Thus, it is essential to accelerate edge derivations
involving transitive edges to efficiently solve CFL-reachability
problems.

C. RQ2. Performance Evaluation

Table I and Table II display the performance of three algo-
rithms in value-flow analysis and alias analysis, respectively.
In both tables, “STD”, “POCR” and “PEARL” denote the
standard algorithm [24], POCR [25], and our multi-derivation
approach, respectively. Besides, column 9 shows the speedup
of POCR over STD, and column 12 shows the speedup of
PEARL over POCR. The time (measured in seconds) and
memory (measured in GB) consumption of each algorithm are
shown in the corresponding sub-columns. “-” indicates that the
algorithm exceeds the time limit (6 hours).

Result. In terms of performance, PEARL outperforms two
baselines on all benchmarks.

Value-flow analysis. In Table I, PEARL is over 82.73x faster
than STD (the standard algorithm) on average. Comparison
to POCR shows that PEARL achieves an average speedup of
10.1x over POCR, with a maximum improvement of 29.2x
for perlbench. It is worth noting that PEARL solves each
benchmark for value-flow analysis within one minute.

Alias analysis. In Table II, STD timeouts for 5 benchmarks.
PEARL runs 155.26x faster than the standard algorithm on
average for the 5 completed benchmarks. Compared to POCR,
PEARL achieves a performance improvement of 2.37x over
POCR on average.

Memory usage. Table I and Table II demonstrate that PEARL
only introduces moderate memory overhead over STD. On
the other hand, PEARL consumes less memory than POCR
for almost all benchmarks. In value flow analysis (Table I),
where the fully transitive edges dominate, PEARL achieves
significant memory savings compared to POCR. For instance,
in the cactus benchmark, POCR utilizes nearly 40 GB of
memory, whereas PEARL only requires less than 5 GB of
memory.

Discussion. By efficiently solving transitivity in a multi-
derivation manner, PEARL obtains promising speedups over
the standard algorithm and POCR for both clients.

D. RQ3. Effectiveness of Propagation Graph Representation

To evaluate the effectiveness of the propagation graph
representation in eliminating repetitive derivations, we design
an ablation PEARL-WB, which employs the propagation graph
representation but without our batch propagation technique.
We compare PEARL-WB with POCR, which adopts a spanning
tree model, in terms of the reduced derivations and overall
performance.

Reduced Derivations. The percentage of repetitive deriva-
tions is computed by (D − A)/D, where D and A are the
number of total derivations and the number of edges added
to the graph. The standard algorithm’s repetitive derivations
account for 99.31% and 99.95% in value-flow analysis and
alias analysis, respectively. On average, POCR and PEARL-
WB eliminate 99.84% and 99.59% of the repetitive derivations

over the standard algorithm for two clients, respectively.
Additionally, Figure 7 and Figure 8 evaluate the computational
redundancy defined by D/A, measuring how many derivations
are needed for an actual edge addition on average. The com-
putational redundancy of PEARL-WB and POCR are close for
most benchmarks. On average, the redundancy values of POCR
are 2.35 and 1.96 in value-flow analysis and alias analysis,
respectively. The average redundancy values of PEARL-WB
are 5.64 in value-flow analysis and 2.38 in alias analysis.

Discussion. Given a fully transitive relation A, the spanning
tree model ensures that each node in the tree is reachable
from the root node via only one path; PEARL-WB retains a
global propagation graph for all nodes, where a node pair
can be connected via multiple reachable A-paths. As a result,
POCR eliminates more repetitive derivations than PEARL-
WB. However, we find that reducing more derivations do not
necessarily result in better performance since it can entail
maintenance cost.

Overall Performance. The performance statistics of
PEARL-WB for value-flow and alias analysis are respectively
listed in Table I and Table II. PEARL-WB achieves a dramatic
speedup of 7.17x over POCR for value-flow analysis (Table I).
For alias analysis (Table II), PEARL-WB runs slightly faster
(1.09x) than POCR.

Discussion. We notice that POCR takes a non-trivial amount
of work to maintain spanning trees in our experiments, es-
pecially when fully transitive edges are dense. The signifi-
cant speedup achieved by PEARL-WB over POCR for value-
flow analysis, confirms the aforementioned statistics that fully
transitive relations dominate in value-flow analysis(Figure 6).
In addition, PEARL-WB saves a lot of memory compared to
POCR. This is because our propagation graph representation
is conceptually simple and cheap to update on the fly. For the
perlbench benchmark in Table I, POCR solves within over 25
minutes with 63-GB memory consumption, while PEARL-WB
takes only around 2 minutes with 10-GB consumed memory.
This emphasizes that exhaustively diminishing computational
redundancy by POCR does not necessarily result in improved
overall performance, because it can entail additional costs to
maintain spanning trees. In alias analysis, the performance of
PEARL-WB and POCR are comparable because fully transitive
edges only take a small proportion and the representation
maintenance cost is negligible compared to overall solving
time.

To sum up, propagation graph representation is effec-
tive (eliminating most repetitive derivations) and lightweight
(cheap to maintain) for both two clients, achieving a promising
overall performance.

E. RQ4. Effectiveness of Batch Propagation

PEARL adopts a muti-derivation manner via batch propa-
gation to reduce propagation efforts. To quantify the benefit,
We compare PEARL with PEARL-WB to show how many
propagations are pruned by batch propagation and the of-
fered speedups. We define the number of propagations during
solving transitive production rules as PT . Thus, the reduction
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Fig. 9: Reduction rates in propagations of transitive relations

rate achieved by batch propagation can then be obtained via
(PTPEARL-WB − PTPEARL)/PTPEARL-WB.

Result. Figure 9 shows the reduction rates achieved by
PEARL, with average reductions of 79.31% and 98.53% for
value-flow analysis and alias analysis, respectively. Conse-
quently, PEARL runs 1.3x and 2.17x faster than PEARL-WB
for value-flow analysis (Table I) and alias analysis (Table II),
respectively.

Discussion. By performing batch propagation, PEARL elim-
inates a substantial number of propagations for transitive
relations over PEARL-WB. As discussed in Section IV, we
adopt eager propagation for fully transitive production (dom-
inating in value-flow analysis), and iterative propagation for
partially transitive production (dominating in alias analysis).
Iterative propagation appears to accumulate more reachability
relations, thereby pruning more propagations. As a result,
PEARL achieves a larger speedup over PEARL-WB in alias
analysis than value-flow analysis.

VI. RELATED WORK

This work is relevant to improving the efficiency of CFL-
reachability analysis. CFL-reachability framework was ini-
tially proposed in [13] and has been used to formulate many
program analysis problems [4]. CFL-reachability was also
studied in various contexts such as recursive state machine [35]
and visibly pushdown languages [36]. A class of set constraints
and CFL-reachability were also shown to be interconvert-
ible [24]. Later, a practical work [21] described a specialized
set constraint reduction for Dyck-CFL-reachability. It is com-
monly known that CFL-reachability-based algorithms have a
cubic worst-case complexity. Previous work [14] showed that
the Four Russians’ Trick could yield a subcubic algorithm,
which is orthogonal to our approach. So far, Significant
progress has been made for specific clients, such as bidirected

Dyck-reachability [8], [34], [37], IFDS-based analysis [38]–
[43], pointer analysis [5]–[7], [10]–[12], [44], to just name a
few. However, these algorithms are designed for predefined
context-free grammars and typically do not work for other
grammars, e.g., the IFDS framework [1] is not applicable to
the alias analysis evaluated in our experiments.

A prevalent solution to avoid derivation redundancy is to
construct summary edges for common paths [1], [3], [10]–
[12], [21], [45], known as summarization. Sparse analysis [26],
[27], [39], [45]–[49] adopts a similar idea by summarizing
data dependencies to skip unnecessary paths. However, paths
consisting of transitive edges have already been summarized as
secondary edges by the standard algorithm [24], which exhibits
a large amount of redundancy and poor scalability. Reduc-
ing the graph size by offline preprocessing techniques [16],
[18]–[20] can also alleviate redundancy. Nevertheless, a large
amount of redundancy can only be captured during the anal-
ysis. To diminish unnecessary computations, Graspan [22]
utilizes a few data processing techniques from a novel “Big
Data” perspective, and Datalog engine Soufflé [23] adopts
the semi-naive evaluation strategy. However, these general
frameworks do not utilize transitivity, and there is still a
substantial amount of derivation redundancy [25]. POCR [25]
accelerates CFL-reachability solving by reducing repetitive
derivations. It also shows that removing transitive relations
by grammar rewriting has limited effectiveness in reducing
redundancy. Different from existing techniques, our multi-
derivation approach effectively reduces derivation redundancy
by propagating reachability relations in batch on sparse con-
straint graphs.

VII. CONCLUSION

This paper has proposed PEARL, a fast multi-derivation ap-
proach that efficiently solves transitivity for CFL-reachability
by reducing derivation redundancy. Our experiments demon-
strate that PEARL significantly accelerates CFL-reachability
solving, achieving average speedups of 82.73x for value-flow
analysis and 155.26x for alias analysis over the standard CFL-
reachability algorithm. When compared with POCR, a state-
of-the-art CFL-reachability solver, PEARL is 10.1x and 2.37x
faster for value-flow and alias analysis, respectively.
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synthesis of program analyzers. In Computer Aided Verification: 28th
International Conference, CAV 2016, Toronto, ON, Canada, July 17-23,
2016, Proceedings, Part II 28, pages 422–430. Springer, 2016.

[24] David Melski and Thomas Reps. Interconvertibility of a class of set
constraints and context-free-language reachability. Theoretical Computer
Science, 248(1-2):29–98, 2000.

[25] Yuxiang Lei, Yulei Sui, Shuo Ding, and Qirun Zhang. Taming transitive
redundancy for context-free language reachability. Proceedings of the
ACM on Programming Languages, 6(OOPSLA2):1556–1582, 2022.

[26] Yulei Sui, Ding Ye, and Jingling Xue. Static memory leak detection
using full-sparse value-flow analysis. In Proceedings of the 2012
International Symposium on Software Testing and Analysis, pages 254–
264, 2012.

[27] Yulei Sui, Ding Ye, and Jingling Xue. Detecting memory leaks statically
with full-sparse value-flow analysis. IEEE Transactions on Software
Engineering, 40(2):107–122, 2014.

[28] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive
reduction of a directed graph. SIAM Journal on Computing, 1(2):131–
137, 1972.

[29] Dennis M Moyles and Gerald L Thompson. An algorithm for finding a
minimum equivalent graph of a digraph. Journal of the ACM (JACM),
16(3):455–460, 1969.

[30] Christian Fecht and Helmut Seidl. Propagating differences: An efficient
new fixpoint algorithm for distributive constraint systems. Nord. J.
Comput., 5(4):304–329, 1998.

[31] David J Pearce, Paul HJ Kelly, and Chris Hankin. Online cycle
detection and difference propagation for pointer analysis. In Proceedings
Third IEEE International Workshop on Source Code Analysis and
Manipulation, pages 3–12. IEEE, 2003.

[32] Manu Sridharan and Stephen J Fink. The complexity of andersen’s
analysis in practice. In Static Analysis: 16th International Symposium,
SAS 2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings 16,
pages 205–221. Springer, 2009.

[33] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow
analysis in llvm. In Proceedings of the 25th international conference
on compiler construction, pages 265–266. ACM, 2016.

[34] Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis.
Optimal dyck reachability for data-dependence and alias analysis. Pro-
ceedings of the ACM on Programming Languages, 2(POPL):1–30, 2017.

[35] Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid,
Thomas Reps, and Mihalis Yannakakis. Analysis of recursive state
machines. ACM Transactions on Programming Languages and Systems
(TOPLAS), 27(4):786–818, 2005.

[36] Rajeev Alur and Parthasarathy Madhusudan. Visibly pushdown lan-
guages. In Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, pages 202–211, 2004.

[37] Yuanbo Li, Kris Satya, and Qirun Zhang. Efficient algorithms for
dynamic bidirected dyck-reachability. Proceedings of the ACM on
Programming Languages, 6(POPL):1–29, 2022.
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