
MalWhiteout: Reducing Label Errors in Android Malware
Detection

Liu Wang∗
School of Cyber Science and Engineering, Huazhong

University of Science and Technology
Wuhan, China

w_liu@bupt.edu.cn

Haoyu Wang†
School of Cyber Science and Engineering, Huazhong

University of Science and Technology
Wuhan, China

haoyuwang@hust.edu.cn

Xiapu Luo
The Hong Kong Polytechnic University

Hong Kong, China
csxluo@comp.polyu.edu.hk

Yulei Sui
University of Technology Sydney

Sydney, Australia
yulei.sui@uts.edu.au

ABSTRACT

Machine learning based Android malware detection has attracted
a great deal of research work in recent years. A reliable malware
dataset is critical to evaluate the effectiveness of malware detection
approaches. Unfortunately, existing malware datasets used in our
community are mainly labelled by leveraging existing anti-virus
services (i.e., VirusTotal), which are prone to mislabelling. This,
however, would lead to the inaccurate evaluation of the malware
detection techniques. Removing label noises from Android malware
datasets can be quite challenging, especially at a large data scale.
To address this problem, we propose an effective approach called
MalWhiteout to reduce label errors in Android malware datasets.
Specifically, we creatively introduce Confident Learning (CL), an
advanced noise estimation approach, to the domain of Android
malware detection. To combat false positives introduced by CL, we
incorporate the idea of ensemble learning and inter-app relation to
achieve a more robust capability in noise detection. We evaluate
MalWhiteout on a curated large-scale and reliable benchmark
dataset. Experimental results show that MalWhiteout is capable
of detecting label noises with over 94% accuracy even at a high
noise ratio (i.e., 30%) of the dataset.MalWhiteout outperforms the
state-of-the-art approach in terms of both effectiveness (8% to 218%
improvement) and efficiency (70 to 249 times faster) across different
settings. By reducing label noises, we show that the performance
of existing malware detection approaches can be improved.

CCS CONCEPTS

• Software and its engineering→ Development frameworks

and environments.
∗Liu Wang (w_liu@bupt.edu.cn) is also affiliated with School of Computer Science,
Beijing University of Posts and Telecommunications.
†Haoyu Wang is the corresponding author (haoyuwang@hust.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3560418

KEYWORDS

label noise, Android malware detection, confident learning

ACM Reference Format:

Liu Wang, Haoyu Wang, Xiapu Luo, and Yulei Sui. 2022. MalWhiteout:
Reducing Label Errors in Android Malware Detection. In 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’22), Oc-
tober 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3551349.3560418

1 INTRODUCTION

Android malware continues to grow and poses an increasing threat
to users (e.g., privacy leakage, financial losses, etc.). Accordingly,
Android malware detection and classification have attracted mas-
sive research efforts from our community in recent years. According
to statistics [3], more than 10K papers have focused on Android
malware detection in the past decade, most of which are based
on machine learning techniques. In such work, both model train-
ing and evaluation rely on a set of apps (i.e., samples) and their
associated labels (i.e., benign or malicious). Typically, the labels
can be either automatically flagged by anti-virus services such as
VirusTotal [4] or manually flagged by security experts.

However, existing malware labelling methods have their limi-
tations. On the one hand, the results returned by anti-virus ser-
vices (i.e., VirusTotal) are shown to be unreliable and are prone
to mislabelling (see § 2). On the other hand, manually labelling is
labour- and time-intensive, requires extensive expert knowledge
and is difficult to scale to large datasets. Thus, most existing mal-
ware datasets [8, 23, 39, 42] that are widely used by related studies
were created using the detection results of VirusTotal. As there are
over 60 engines that report the detection results on VirusTotal, re-
searchers usually use ad-hoc methods to select different thresholds
(e.g., 1, 5, or 10) of detection engines to label malware samples.

The noisy labels in the dataset, i.e. mislabelled samples, have
a considerable impact on machine learning based malware detec-
tion research. First, noisy labels in the training set can degrade
the performance of malware detection models trained with them,
making the models less effective in practice. Second, noisy labels
in the test/validation set can lead to misjudgement about the true
performance of existing malware detection methods. Given the cur-
rent state of common malware labelling methods, the noisy label
problem is inevitable/inherent in machine learning based malware

https://doi.org/10.1145/3551349.3560418
https://doi.org/10.1145/3551349.3560418
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3551349.3560418&domain=pdf&date_stamp=2023-01-05

ASE ’22, October 10–14, 2022, Rochester, MI, USA Liu Wang, Haoyu Wang, Xiapu Luo, and Yulei Sui

detection and is difficult to deal with. Moreover, this situation will
become more acute with the growing size of the datasets used in
the research. Yet, this problem has not been effectively addressed.
Many studies still use noisy datasets for model training and testing,
which to some extent introduces evaluation bias.

Actually, beyond Android malware, label noise is a common
problem in machine learning datasets (e.g., image datasets). There
is a plethora of research and techniques to address noisy labels in
academia, e.g., noise estimation [11, 12, 28], and robust training
from noisy labels [16, 29, 34]. Much work deals with noisy labels by
means of noise estimation and data cleaning, i.e., excluding samples
whose labels are considered potentially corrupted and training with
the cleaned dataset. There is also work focusing on robust train-
ing from noisy labels, i.e., instead of explicitly pinpointing which
sample is likely mislabelled, it focuses on improving the robust-
ness of the model against noise so that it can be trained well even
when noisy labels exist in the training data. For example, recent
studies [14, 25] design noise-tolerant loss functions to improve the
robustness of learning neural networks under label noise.

Thus, one straightforward way to handle noisy malware labels
is to borrow the ideas from the general machine learning com-
munity (i.e., remove the noisy image labels). However, based on
our preliminary exploration, existing techniques have much room
for improvement when migrating them to the malware detection
domain. The underlying reason is that apps are fundamentally dif-
ferent from images. Mobile apps have rich semantic information
in code, a wide variety of metadata, complex processing methods,
multiple file compositions, and many relationships between apps
through attributes, which are much more complicated than images.
To the best of our knowledge, the only existing work in the research
community targeting noise reduction in Android malware detection
is Differential Training [47]. It relies on a heuristic to differentiate
wrongly-labelled samples and correctly-labelled samples based on
their loss values in two deep learning models. The noise estimation
is completed by multiple iterations, with each iteration finding out-
liers and revising their labels. The revised labels would be used for
malware detection. However, it requires multiple iterations thus
falls short in terms of efficiency and practicality, especially when
dealing with large-scale malware datasets (see § 5.5).

To overcome the problem ofmalware detectionwith noisy datasets,
we propose MalWhiteout, a lightweight yet effective noise detec-
tion system that can reduce label errors in machine learning based
Android malware detection. We have migrated Confident Learn-
ing [28], an advanced noise estimation technique, to the domain
of Android malware detection. To mitigate the bias introduced by
model itself, we further incorporate the idea of ensemble learning
and app-feature based calibration to improve the robustness of
MalWhiteout. Based on a large-scale crafted malware dataset,
we show that MalWhiteout can achieve an accuracy of over 94%
for the dataset with 30% wrong labels. For samples mislabeled by
VirusTotal,MalWhiteout can identify most of them. Besides,Mal-
Whiteout outperforms the state-of-the-art approach [47] in terms
of both effectiveness (8% to 218% improvement) and efficiency (70
to 249 times faster) across different settings.

In summary, this paper makes the following contributions:
• We perform a large-scale study to show the potential label
errors introduced by existing malware labelling method, and

observe that VirusTotal’s scan results have significant uncer-
tainty for labelling malware. We collected over 870K samples
which were uploaded to VirusTotal three times over a long
period. Over 30% of the samples were found to suffer from
label changes in the rescan after two years.

• We propose an accurate and efficient approach, MalWhite-
out, for pinpointing the noisy labels in malware datasets.
Our approach creatively introduces Confident Learning (CL)
method to detect the noisy labels in Android datasets, and
incorporates the idea of ensemble learning and app relation
based adjustment to achieve more robust results.

• We perform extensive experiments to evaluate the effec-
tiveness of MalWhiteout. Experimental results show that
MalWhiteout is capable of detecting label noise with an ac-
curacy of over 94% and F1 of over 91% at varying noise ratios
up to 30%, and can identify most of the mislabels from Virus-
Total labeling. Compared to the state-of-art, MalWhiteout
achieves much better results (8% to 218% improvement) with
significantly shorter time (70 to 249 times faster). We fur-
ther show that the performance of malware detectors can be
improved after removing noise byMalWhiteout.

To facilitate further research,MalWhiteout is released at:

https://github.com/MalTools/MalWhiteout

2 THE UNCERTAINTY OF ANDROID

MALWARE LABELLING

2.1 Malware Labelling based on VirusTotal

Due to the prohibitive cost of manually labelling, relying on the scan
results of existing anti-virus services (e.g., as collected in VirusTotal)
is the most common solution to label malware in the community.

However, a common challenge of using VirusTotal is that differ-
ent security engines often diverge in their detection results for a
given app. In this context, researchers have to work out a strategy
to aggregate the results and assign a binary label (i.e., malicious
or benign) to the app. Typically, researchers will define a voting
threshold, and the scanned app will be considered malicious once
the number of positive engines exceeds (or equals to) this thresh-
old. However, the threshold is mostly set based on the researchers’
intuition and experience, without convincing reasons. Considering
that there are over 60 anti-virus engines on VirusTotal, different
researchers can take different thresholds. For example, a number of
studies [23, 36, 40] used 1 engine as the threshold, TESSERACT [30]
set the threshold to 4 for malware labelling, and Wang et al. [38]
set the threshold to 10. Wei et al. [43] considered over half of the
antivirus products’ decisions to be reliable, and used 28 engines (at
least 50% of the 55 specific antivirus products) as the threshold to
create an Android malware dataset. Previous work [51] surveyed
115 academic papers that used VirusTotal for malware labelling, and
found 82 of them clearly stated taking a threshold-based method
and using varying thresholds (ranging from 1 to 40) to determine
whether a file is malicious or benign. Thus, there are no standards
on how to label apps based on the detection results of various engines.

Worse still, the detection results of VirusTotal could change over
time, making it more difficult to infer the true label of an app. Existing
work [51] reveals that label flips widely exist across engines in

https://github.com/MalTools/MalWhiteout

MalWhiteout: Reducing Label Errors in Android Malware Detection ASE ’22, October 10–14, 2022, Rochester, MI, USA

VirusTotal (i.e., individual engines can flip their labels on a given
file in a short period of time), and they do not necessarily disappear
even after a year. Hence, such limitations (i.e., variable thresholds
and volatility of results) make VirusTotal-based malware labelling
method subject to significant uncertainty.

2.2 Preliminary Estimation of the Uncertainty

It is known that VirusTotal and its third-party vendors keep up-
dating their anti-malware engines, so the label of a given sample
may change over time. Recent efforts [21, 51] tried to measure the
label dynamics of VirusTotal, but they are limited in providing a
solid estimation of how unreliable VirusTotal is, and most of the
studies are focused on PE files. In this regard, we carried out a
straightforward preliminary study to explore the dynamics and
uncertainty of VirusTotal’s labelling on Android malware.

We had collected over 876K samples from Androzoo [7], which
were sourced from Google play and detected as malicious by at least
one engine from VirusTotal.1 The samples were collected in August
2019, at which time we uploaded them to VirusTotal for rescanning.
After two years, we uploaded these samples to VirusTotal for rescan-
ning again in August 2021. As such, we obtained three snapshots of
the scanning reports, i.e., scan results provided by Androzoo, scan
results in 2019.08 and scan results in 2021.08, respectively. Then
we compared the results of these three scans. Figure 1 portrays the
flow of app labels across multiple scans, where a benign app refers
to one that is not flagged by any engine, otherwise is malicious (i.e.,
set the threshold as 1). For the first two scans, we found that 21%
of the samples turned from malicious to completely benign, with
none of the engines flagged positive (i.e., returned a “malicious”
label). This means that 21% samples had their labels changed (if
we use 1 engine as the threshold to label malware). For the last
two scans, we found that overall about 64% of the samples gained
different scanning results, varying between 1 and 39 engines. In
2019.8, about 78.8% of the samples were flagged positive by at least
one engine, and the other 21.2% were not flagged positive by any of
the engines. In 2021.8, the two percentages became 65.9% and 34.1%
respectively. We can see that if we set the threshold to 1, i.e., label
a sample as malicious if at least one engine thinks it is malicious,
there are approximately 17% of the samples were given different
labels by VirusTotal over the two years (about 2% of the samples
originally seen as benign shifted to malicious and about 15% of
the samples originally seen as malicious shifted to benign). If we
compare the first and third scans, the number of apps whose labels
changed is even more (34.1%). Thus, using VirusTotal for malware
labelling is prone to generating error/noisy labels.

3 KEY IDEAS OF MALWHITEOUT

In general, our key idea is to borrow existing noise-handling meth-
ods to deal with the noise problem in machine learning based An-
droid malware detection. However, our preliminary exploration
revealed that while existing methods can be ported to deal with
our task, they still present some challenges (idea-1). In response,
we come up with two ideas for improvement (idea-2 and idea-3).

1AndroZoo is a growing collection of Android apps collected from several sources
including the official Google Play market. Each app is analysed by different antivirus
products from VirusTotal, and the scanned results are provided.

before 2019.8

876,234
(100%)

2021.82019.8

690,543
(78.8%)

185,691
(21.2%)

577,304
(65.9%)

298,930
(34.1%)166,685

(19%)

558,298
(63.7%)

Malicious Benign

Figure 1: The uncertainty of Android malware labelling.

3.1 Idea-1: The Applicability of Traditional

Noise Estimation Techniques

As many noise estimation techniques have been proposed in other
fields (e.g., image classification), we first tried such methods to see
if they also work well for addressing the noise problem in Android
malware detection. Specifically, we picked a few open source efforts
(e.g., Confident Learning [28], Co-Teaching [18], Decoupling [24]),
ran them on a crafted noisy Android dataset (i.e., the dataset with
10% noise in § 5.1) and verify their effectiveness in detecting label
noise. Unfortunately, we observe a number of challenges when
migrating these methods. First, although some methods (e.g., Co-
Teaching [18], Decoupling [24]) can detect some noises in malware
datasets, they can also generate intolerable number of false posi-
tives (i.e., identify the correctly labeled samples as noises). These
numerous false positives cannot be ignored because if we correct
the labels by flipping them, these false positives can become new
noises. Second, some methods [19] require a clean dataset for train-
ing. However, since the technologies that make up malware are
highly sophisticated and constantly evolving, it is challenging for us
to ensure the correctness of an Android dataset, and our initial goal
is to make MalWhiteout work on any given malware datasets.
Third, all the methods utilize features that are based on separate
entities, without taking into account that many apps are related
to each other (e.g., a malicious developer can release a number of
similar malware).

Nevertheless, among them, Confident Learning (CL) [28] seems
a viable method, as it performed best during our preliminary explo-
ration (i.e., it gets rid of the highest amount of noises). This inspired
us to leverage CL for noise handling in Android malware detection.

Confident Learning for Noise Estimation. Confident Learn-
ing (CL) [28] is an emerging framework for characterizing and
identifying label errors in datasets and learning with noisy labels.
CL works by estimating the joint distribution between the (noisy)
observed labels and the (true) latent labels. The central idea of CL to
estimate the true labels is that when the predicted probability of a
sample is greater than a per-category-threshold, the sample is con-
fidently counted as actually belonging to that category. Specifically,
the thresholds for each category are the average predicted probabil-
ity of samples in that category. This equips CL with robustness to
heterogeneous class probability distributions and class-imbalance.
To find label errors, CL requires only two inputs: (1) an N × K

ASE ’22, October 10–14, 2022, Rochester, MI, USA Liu Wang, Haoyu Wang, Xiapu Luo, and Yulei Sui

Noisy Inputs

Cross Validation
C

90 10

20 80

y*=M y*=B

y=M

y=B

Q
0.45 0.05

0.1 0.4

App files & Noisy Labels

y*=By*=M

y=M

y=B

prune Potential label errors
(estimated noises)

Count

Normalize

Confident Joint C

Estimate of Joint Q

Cleaner Data

Malware Detection
Model

Predicted probs

Figure 2: The working process of Confident Learning (CL).

matrix of out-of-sample predicted probabilities for N samples and
K categories which is obtained using a model (by cross-validation)
beforehand ; (2) an array of noisy/original labels for each sample.
As shown in Figure 2, CL counts the examples that are labeled as
y and have a high probability of belonging to y∗, constructing the
confident joint C where diagonals capture correct labels and non-
diagonals capture asymmetric label error counts. Then C is used
to estimate the joint distribution Q , characterizing the noise rates
of each case. Following the estimation of C and Q , any rank and
prune approach can be used to clean data (e.g., prune by probability
ranking and noise rate). CL decouples the model and data clean-
ing procedure by working with the model’s outputs (i.e., predicted
probabilities), so that any model that produces predicted probabili-
ties can be used. Moreover, it is non-iterative (thus running fast)
and does not rely on any set of true labels that is guaranteed to be
uncorrupted. The implemented CL framework can be wrapped with
any malware classifier (e.g., Drebin [8], CSBD [6]) to find potential
label errors in a noisy dataset.

However, it is not perfect due to the presence of false positives in
the results and the neglect of some app-specific features (e.g., app
relation). We thus turn our attention to handle these two issues.

3.2 Idea-2: The Power of Multiple Models

CL works with a machine learning based malware detection model
to estimate noise, which can be any malware detection model here.
In fact, there are quite a lot of malware detection methods in the
research community, which use different features and classification
models. To prevent the possible bias introduced by the method itself,
in our preliminary exploration, we chose two open source malware
detection methods, i.e., CSBD [6] and Drebin [8], to verify the noise
detection effect of CL. We modified their code and implemented
CL’s method in an attempt to find label errors on the crafted noisy
dataset. Specifically, the ground truth dataset we use consists of
5,794 malware samples and 5,800 benign samples (described in
detail in § 5.1), on the basis of which we randomly select 10% of
samples whose labels are flipped and thus become noises.

Figure 3 shows the noise distribution for the three cases of true
noises, noises detected by the CL-wrapped CSBD model, and noises
detected by the CL-wrapped Drebin model. We gave each app a

0 2000 4000 6000 8000 10000
No. of samples

True
noises

Noises
detected
by CSBD

Noises
detected

by Drebin

Figure 3: Noise detection results based on different models.

number and ranked the noise samples first. So each app is a data
point on the x-axis shown in solid colors when identified as noise.
We can observe that both models can successfully detect many true
noises (dense vertical lines on the left), but also have some false
positives (sparse vertical lines on the right). Overall the Drebin
model performs better than the CSBD model with CL. A closer look
reveals that the false positives identified by the two models are
usually inconsistent (the blue and green lines rarely overlap on a
straight line). This suggests that the samples in which the decisions
of the two models diverge are prone to be false positive. In contrast,
the samples detected as noisy by more than one model are more
inclined to be true noises.

For the sake of statistical evidence, we calculate the percentage of
true noises in the two scenarios, i.e., in the noises predicted by two
models and in the noises predicted by only one of the models. As a
result, of the 989 samples identified as noises by the two models, 969
samples (98%) were actually true noises, compared to 170 of the 500
samples (34%) identified as noises by only one of the models. We
suspect that this may arise from the bias introduced by the method
itself which is different for each method. Thus, each method is able
to flag many true noises, while the generated false positives vary
widely. This suggests that relying on multiple models for noise
detection may be more effective than a single model.

3.3 Idea-3: App Specific Features are Helpful

As aforementioned, the CL models use the semantic features of
the individual apps like the features of other entities. Some app-
specific features, i.e., the relations between apps, are ignored. As
is well known, each app has a wealth of attributes (e.g. developer,
signature) that enable association between apps. Such association
sometimes can play an important role in mobile analysis, such as
deciding the app’s label. For example, if two apps have the same
private signature (i.e., from the same developer), their labels are
likely to be the same, as a malicious developer/group often pub-
lishes more than one malicious app. Previous work [31] made use
of Indicators of compromise (IoCs)2 in mobile markets to identify
malicious developer accounts and potential unreported malware.
They revealed that the connections between app IoCs can be lever-
aged for attribution inference, and the developer identifiers from
app markets (e.g., developer ID, developer name, company name)
can be used to source the app.3

2In the field of cyber-security, an Indicator of compromise (IoC) is an object or activity
observed on a network or device that indicates a high probability of unauthorised
access to the system. Such indicators are used to detect malicious activity at an early
stage as well as to prevent known threats.
3Note that, such information can be parameterized by themarket, and is not guaranteed
to be collected for every app.

MalWhiteout: Reducing Label Errors in Android Malware Detection ASE ’22, October 10–14, 2022, Rochester, MI, USA

Noises identified
by CL(CSBD)

Noises identified
by CL(Drebin)

N

N N

Noises identified
by App Relation

Figure 4: An example of app relation based calibration.

In view of this, we carried out a simple preliminary investigation
to see if such app relation could help us fine-tune noisy labels. Given
an app, suppose we infer its true label based on the labels of the
majority of apps that share the same developer with it, and decide
whether it is a noise based on the difference between its original
label and the inferred label. By this means, on our noisy dataset,
we can successfully identify many true noises and very few false
positives. The unidentified noises were mostly due to the fact that
that there were no apps in the dataset sharing the same developer
with the given app. More importantly, if we zoom in to this portion
of the samples in which the noise can be identified by app relation
(i.e., samples that share developer with at least one other sample),
this method yielded better results than CL. As shown in Figure 4,
the 18 apps shared the same developer4, and 3 of them had original
labels of benign, which were actually noisy labels. Among them, 4
apps were identified as noises by the CL-wrapped CSBD model, of
which 2 were false positives. And 4 apps were identified as noises by
the CL-wrapped Drebin model with 1 was false positive. Whereas,
the developer-based app relation could correctly identify all the
noises, better than both models. This shows that app relation can
facilitate noise detection. However, as such relation cannot cover
the full range of apps, it might be a good idea to adjust the noise
detection results relying on the app relation.

4 THE DESIGN OFMALWHITEOUT

Enlightened by the key ideas, we propose a lightweight yet effective
system calledMalWhiteout, aiming at reducing label noises for
machine learning based Android malware detection. Figure 5 illus-
trates the overall architecture of MalWhiteout.MalWhiteout
is built atop CL, and it further introduces two major components:
1)ensemble-based noise detection, which adopts ensemble learning
to improve the robustness of noise estimation based on CL; 2) app
relation based adjustment, which further uses an inter-app relation
based on app developers to adjust the noise detection results. Apps
and their original labels (which may be incorrect) are fed into the
system, where MalWhiteout detects potential label errors in the
dataset and revises/flips their labels, leading to a cleaner dataset.

4.1 Ensemble-based Noise Detection

MalWhiteout implements noise detection based on Confident
Learning. To address the dependency of CL on malware detection
models in our preliminary exploration (see § 3.2), we incorporate the
idea of ensemble learning for a more comprehensive and accurate

4signature: 27196e386b875e76adf700e7ea84e4c6eee33dfa

assessment on the label noises. Specifically, we take advantage of
Stacking (also known as Stacked Generalization) [1], an ensemble
learning method that combines predictions from multiple machine
learning algorithms on the same dataset via ameta-learner to output
the final prediction. In practice, the architecture of the Stacking
method is usually two-level, involving multiple base learners (level-
0 learners), and a meta-learner (level-1 learner) that combines the
predictions of the base learners. For this purpose, we first need to
properly select multiple base learners and a meta-learner.

4.1.1 Learner Selection and Feature Extraction. For base learners,
we need to select several Android malware detection approaches.
Each sample is transformed into a multi-dimensional numeric fea-
ture vector as specified by the corresponding malware detection
approach. In general, the criterion for selection is that the malware
detection approaches should be "good and different". A good mal-
ware detection approach ensures the accuracy of the prediction,
and different malware detection approaches help to compensate
for the bias of each approach. For this, we have shortlisted three
malware detection efforts that are widely used in academia, i.e.,
Drebin [8], CSBD [6], MalScan [45], all of which report promising
results and use very different features and methods for malware
detection. Drebin [8] is a lightweight approach to Android malware
detection that extracts features (e.g. permissions, Android compo-
nents, API calls, network addresses, etc.) from the app’s code and
Manifest file. The features are further fed into a Support Vector Ma-
chine (SVM) classifier for malware detection. CSBD [6] constructs
a Control Flow Graph (CFG) of the app’s bytecode and builds a set
of textual features extracted from the CFG. It uses Random Forest
for malware detection. MalScan [45] is a detection system that re-
lies on social-network-based centrality analysis of sensitive API
calls. It treats function call graphs of apps as social networks and
extracts the semantic features of the graphs. These three malware
detection approaches serve as base learners in our system.5 All the
three approaches are applied in parallel to the dataset, extracting
features that are specific to each approach for each sample. For
the meta-learner, it is common to use a simple and linear model to
learn how to harness the variety of predictions made. We adopt the
Logistic Regression model as it is a linear model that is typically
used for binary classification tasks.

4.1.2 Noise Estimation. Figure 6 shows the workflow of ensemble-
based noisy label detection. First, each base learner works with its
own features and classifier to output predictions, i.e., the predicted
probabilities of each sample under each category, through a 5-fold
cross-validation. As such, a matrix of size N × K , where N refers
to the number of samples and K to the number of categories, is
output by each base learner. Next, for each sample, its probabilities
predicted by the different base learners are concatenated into a new
feature vector, which is fed into the meta-learner along with its
original label. Meanwhile, the meta-learner performs noise detec-
tion by being wrapped into CL. Finally, it outputs the indices of
potential mislabeled samples, i.e. telling us which samples in the
dataset are likely to be mislabelled.

5Note that, any other malware detection approaches can be incorporated to Mal-
Whiteout directly, and we only use these three approaches as a case study to show
the performance of MalWhiteout.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Liu Wang, Haoyu Wang, Xiapu Luo, and Yulei Sui

App files and
original labels

Method Selection

Ensemble-based Noise Detection App Relation

based Alignment

Detector-1

Detector-n

…

Feature
Vector
Extraction

Model-1

Model-n Pn

…

P1

… CL(meta-model)

CL-based Estimation
Cluster apps with
the same developer

…

noisy
label

correct
labels

Revised
labels

Noisy

Dataset
Cleaner

Dataset

Noises

developer info

Publisher

Signature

……

Figure 5: System architecture of MalWhiteout.

classification

models

P2

predicted

probabilities

N*K

N*K

N*K

N app files &
original labels

cross

validation

labels C
la

s
s
if
ie

r

meta-model

with CL

N*(3K) noises

feature1 P1

P3

extracted

features

feature2

feature3 MalScan

classifier

Drebin

classifier

CSBD

classifier

Figure 6:Workflow of ensemble-based noisy label detection.

4.2 App Relation Based Adjustment

Up to now, the aforementioned noise detection approach is es-
sentially a selection based on the uncertain estimation of a single
sample, and the identified “error labels” are not guaranteed to be
true errors. We then seek to improve the system’s correctness by
taking into account the apps’ relations.

As discussed in § 3.3, we primarily leverage the app’s developer
information to infer its true label. Besides the developer identifiers
collected from app markets, we also carry out the extraction of each
app’s signature which symbolizes a particular developer. Note that,
some malware developers may use the known common keys in the
community (such as TestKey, the generic default key for packages
with no key specified) to sign apps in order to conceal themselves.
For this, we identify those signatures that belong to the generic
keys and discard them. After that, we treat apps with the same
developer as belonging to a cluster, and determine the true labels of
the samples in each cluster bymajority voting (if there is more than
one sample in the cluster). Here, we set the threshold to 2/3 based
on some experimental measurements, i.e. if more than 2/3 of the
samples in a cluster are malicious (or benign), then all sample labels
in this cluster would be presumed to be malicious (or benign). In
this way, the few apps in the cluster whose labels are inconsistent
with the presumed label will be regarded as noise. Based on this
decision, the noise detection results obtained in the previous phase
will be adjusted. Note that this phase is a fine-tuning for only the
portion of the samples for which it is possible to infer whether
they are noisy or not through developer-based app relations. At
last, based on the adjusted results, the label of each sample that is
identified as a noise will be revised, resulting in a cleaner dataset.

5 EVALUATION

In this section, we conduct experiments to evaluate the perfor-
mance of MalWhiteout. Our experiments were conducted on a
server running Ubuntu 20.04.1 LTS operating system with 6-core

Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz and 64.0GB memory.
In particular, we investigate the following research questions (RQs):

RQ1 How effective is MalWhiteout in reducing label noises?
RQ2 How important are the design decisions we made forMal-

Whiteout (i.e., ensemble-based noise detection and app
relation based alignment) on the basis of CL?

RQ3 How much can MalWhiteout improve the performance of
existing malware detection efforts?

RQ4 How well does MalWhiteout perform compared with the
state-of-the-art approach?

5.1 Datasets and Metrics

To answer the RQs, we require a credible ground truth dataset in-
cluding both malware and benign apps. On this basis, we artificially
create noisy labels to obtain datasets with varying level of noise.

5.1.1 Malware Dataset. Due to the unreliability of the commonly
used malware labeling methods aforementioned (see § 2), some mal-
ware datasets that largely rely on the VirusTotal scan results are
not used by us, even though they are widely used by the research
community (e.g., AMD [42] and Drebin [8]). To the best of our
knowledge, the most reliable and trustworthy malware dataset in
our community is MalGenome [50], which was created by carefully
examining Android related security announcements, threat reports
and blog contents from existing mobile antivirus companies and
active experts. However, it is old (created in 2011) and has only
1,260 malware samples from 49 families. To expand the dataset, we
use a reliable way similar to that of MalGenome to collect malware
samples, i.e., relying on the analysis reports of security experts.
Usually, the security companies publish security reports to reveal
their new identified malware. These reports are manually analyzed
by security experts and often list the Indicators of compromise
(IoCs), such as the file hash which could be used for us to create
malware dataset. Thus, we make efforts to create an Android mal-
ware dataset called MalRadar [41], which contains a total of 4,534
samples belonging to 148 malware families. Specifically, we first
use a keyword-based method to automatically search and crawl
security reports from leading security company websites, obtaining
178 high-quality security reports which were released from 2014
to 2021. Then we extract the IoCs (app hashes) and family labels
from the collected reports. At last, we successfully download a total
of 4,534 binary files from Koodous [2], one of the most popular
platforms that provided mobile malware downloading services. The

MalWhiteout: Reducing Label Errors in Android Malware Detection ASE ’22, October 10–14, 2022, Rochester, MI, USA

detailed collection process can be found at the paper [41]. This col-
lected dataset can serve as a ground truth malware dataset, along
with MalGenome. As MalGenome was created in 2011 with 1,260
samples ranging from 2010-2011 and MalRadar samples were dis-
tributed in 2014-2021, these two datasets contain a wide variety of
malicious apps covering a time span of almost a decade. As a result,
our ground truth malware set consists of 5,794 malware samples in
total. They are distributed in 196 unique families, with the number
of samples per family ranging from 1 to 796.

5.1.2 Benign Dataset. In addition, we collect and download benign
apps from AndroZoo [7]. To ensure that the benign apps we use are
indeed benign, we upload each benign candidate to VirusTotal for
rescanning two times (i.e., three snapshots in total). Only samples
that are not flagged as positive by any of the engines in all these
three snapshots are eligible. To eliminate the bias that may be
introduced by an unbalanced dataset, we keep the number of benign
apps comparable to the number of malicious apps. As a result, we
obtain a total of 5,800 benign apps as the ground truth benign set.

5.1.3 Crafting Label Noises. To examine MalWhiteout’s capabil-
ity on detecting label noise, we manually create some noisy labels
in the dataset. The noisy labels come from two ways: (1) We ran-
domly select a certain percentage of the samples i.e., 5%, 10%, 15%,
20%, 25%, 30%, respectively, as "noises" whose labels are manually
revised/flipped. (2) We label the samples based on VirusTotal’s scan
results (using a threshold-based method), and take the mislabeled
ones as "noises". We assume that the noise ratio in a dataset used
for malware detection is restrained, as typically the samples are se-
lected by the researchers based on certain criteria. Thus we consider
that a noise ratio limit of 30% is adequate. Note that, we assume that
the noise ratio in a dataset is less than 50%, because if this is not
the case it means that the quality of the dataset is even lower than
randomly labelled, which is rarely possible in practice. In addition,
to prevent possible bias due to the unbalanced distribution of noises
in benign and malicious apps, we keep the noise ratio in malware
set and benign set at an equal level.

5.1.4 Metrics. The noise detection problem addressed by Mal-
Whiteout is essentially a binary classification task, thus we use
the widely used metrics (including precision, recall, accuracy, etc.)
to measure the effectiveness of MalWhiteout. Besides, to more
directly demonstrateMalWhiteout’s ability in reducing noise, we
also list the number and percentage of wrongly-labelled samples
left afterMalWhiteout’s process (# of Noise Left and % of Noise
Left), as well as the percentage of wrong labels being reduced (%
of Noise Reduced). Table 1 presents the metrics used. Note that in
all our experiments, we achieve noise reduction by the strategy of
revising/flipping labels for each identified noise, in order not to
compromise the size of the dataset.6

5.2 RQ1: Overall Effectiveness

5.2.1 Detect label noises from random flipping. We first evaluate
howwellMalWhiteout detects label noises at various noise ratios.
To this end, we conduct experiments on noisy datasets containing

6An alternative strategy is to simply discard all the identified noisy samples. It avoids
generating new noises but causes the loss of some samples (i.e. false positives). In
practice, this strategy can certainly be used if sufficient samples are available.

Table 1: Descriptions of metrics used in our experiments.

Metrics Abbreviation Definition

True Positive TP # samples correctly classified as noise
False Positive FP # samples incorrectly classified as noise
Ture Negative TN # samples correctly classified as non-noise
False Negative FN # samples incorrectly classified as non-noise

Precision Pre TP/(TP + FP)
Recall Rec TP/(TP + FN)

F-measure F1 2 ∗ Pre ∗ Rec/(Pre + Rec)
Accuracy Acc (TP +TN)/(TP +TN + FP + FN)

of Noises # Noises # of wrongly-labelled samples in the dataset
of Noise Left # Left #Noises −TP + FP
% of Noise Left % Left #Le f t/(TP +TN + FP + FN)

% of Noise Reduced % Reduced (#Noises − #Le f t)/#Noises

5%, 10%, 15%, 20%, 25%, 30% noises respectively. Table 2 presents
the detection results of MalWhiteout on datasets at different
noise ratios. We can see that after MalWhiteout’s processing,
the percentage of noisy labels in the dataset is reduced from 5%
to 0.43%, from 10% to 0.62%, from 15% to 1.3%, from 20% to 2.04%,
from 25% to 3.28%, from 30% to 5.16%. As the noise ratio varies
from 5% to 30%, the F1 ranges from 96.8% to 91.3%, the accuracy
ranges from 99.6% to 94.8%, and the percentage of noises reduced
by MalWhiteout ranges from 93.8% to 82.8%. The results suggest
that the effectiveness of MalWhiteout is promising and generally
stable at different noise ratios. However, if we compare side-by-side,
we can notice that the effect of MalWhiteout seems to decrease
gradually as the noise ratio increases from 5% to 30%. The possible
reason is that too many wrong labels in the dataset can affect the
predictions obtained by each base learner through cross-validation,
thus affecting the correctness of noise detection by CL. Additionally,
we fed the post-processing results back intoMalWhiteout for the
30% noise ratio case, which contains a total of 598 (5.16%) noises,
and found that the noise was reduced by almost half again, cutting
the noise ratio down to 2.84% (with 330 left). Thus, for datasets with
heavy label noise, a second pass can yield a much cleaner dataset.
Anyhow,MalWhiteout has good noise detection capability when
the noise ratio of the dataset is within 30%.

Considering that obfuscation is one of greatest challenges in mal-
ware detection domain, we are interested in whether obfuscation
may affectMalWhiteout’s ability to properly label errors. Since
there exist a number of samples using obfuscation techniques in
our collected malware samples, we take an additional check on how
MalWhiteout performed on these obfuscated samples. We find
thatMalWhiteout is still able to identify label noise despite the
use of some obfuscation techniques. For example, for the case of
10% noise ratio, we found that 37 noisy samples were actually obfus-
cated and all of them were correctly identified byMalWhiteout.
We argue that this is attributed to the resistance to obfuscation by
the three malware detectors selected. Theoretically,MalWhiteout
inherits the detection capability of its internal malware detectors,
thus the effect of obfuscation on MalWhiteout basically depends
on the anti-obfuscation capabilities of the selected detectors. This
also reflects the importance of model selection.
5.2.2 Detect label noises from VirusTotal labeling. To better un-
derstand the practical benefits of MalWhiteout in the context
of VirusTotal labeling, which motivated this work, we evaluate
MalWhiteout using the actual mislabels from VirusTotal. Specifi-
cally, for the ground truth dataset we used, we inferred labels based
on the commonly used threshold-based method (i.e., set a voting

ASE ’22, October 10–14, 2022, Rochester, MI, USA Liu Wang, Haoyu Wang, Xiapu Luo, and Yulei Sui

Table 2: Noise detection results at different noise ratios.

Noise Ratio 5% 10% 15% 20% 25% 30%
Noises 580 1160 1740 2320 2900 3480

TP 556 1130 1661 2196 2690 3142
FP 26 42 72 112 170 260
Pre 0.956 0.964 0.959 0.952 0.941 0.924
Rec 0.973 0.973 0.954 0.946 0.927 0.902
F1 0.964 0.968 0.956 0.948 0.934 0.913
Acc 0.996 0.994 0.987 0.980 0.968 0.948

% Reduced 93.1% 93.8% 91.3% 89.8% 86.9% 82.8%
Left 50 72 151 236 380 598
% Left 0.43% 0.62% 1.3% 2.04% 3.28% 5.16%

threshold t and if t or more engines return a “malicious” label, then
the sample is labeled as malicious). In this way, the mislabeled sam-
ples were actual label noises generated by VirusTotal. Evaluating
MalWhiteout on these noises can be important as it is designed
to mitigate the unreliability of VirusTotal labeling.

Once we collected the malware dataset, we uploaded them to
VirusTotal for rescanning to see how many engines managed to
flag them. Figure 7 shows the CDF distribution of the number of
flagged engines in VirusTotal for each sample. It can be seen that
there are indeed a portion of malware samples that were flagged
by a limited number of engines, e.g., 50 samples were flagged by
less than 10 engines. Thus, if we set the threshold t to 10, these 50
samples will be mislabeled by VirusTotal. Overall, the samples that
were flagged by less than 25 engines account for 33%, a quite high
percentage of noise that is not common in VirusTotal labeling. We
thus consider thresholds ranging from 2 to 20. Table 3 presents the
detection results of MalWhiteout on noisy datasets generated by
different thresholds. Assuming we set the threshold to 2, 5, 10 and
20 respectively, there will be 8, 50, 137 and 643 mislabels generated.
These samples are arguably the most evasive malware samples.
Taking them as noises,MalWhiteout can identify most of them.
For example, MalWhiteout can find all of the 8 noises in the case
of threshold=2 and 46 out of 50 noises in the case of threshold=5.
The percentage reduced by MalWhiteout are 100%, 92%, 87.6%
and 64.9% respectively, with 0, 4, 17 and 226 noises left, at vari-
ous thresholds (see the last two rows, i.e., % Reduced* and # Left*).
However, MalWhiteout also generates some false positives that
can be introduced as new noises in the dataset (by flipping labels).
With the introduction of new noises, MalWhiteout can reduce
the noises by more than half. The results look slightly inferior to
the ones in Table 2, probably because of the unbalanced distribution
of noises in the two classes (i.e., only some of the malware labels
are flipped to become noises) and the number of noises is quite
small. Nevertheless, MalWhiteout can still reduce at least half
of the noises, much better than state-of-the-art (see §5.5). Overall,
MalWhiteout can effectively reduce the number of incorrectly
labelled samples from VirusTotal, thereby countering the unreli-
ability of VirusTotal labeling, which is the practical relevance of
MalWhiteout in the context of VirusTotal labeling.

Answer to RQ1:MalWhiteout achieved an accuracy over
94% and F1 over 91% in detecting noises at different noise

(25,33%)

Figure 7: CDF of the number of flagged engines on VirusTo-

tal.

Table 3: Noise detection results at different thresholds.

Threshold 2 5 10 20
(%) Noises 8 (0.1%) 50 (0.9%) 137 (2.4%) 643 (11%)

TP 8 46 120 417
FP 4 12 27 44
Pre 0.667 0.793 0.816 0.904
Rec 1.0 0.92 0.876 0.649
F1 0.8 0.852 0.845 0.755
Acc ≈ 1.0 0.999 0.996 0.977

% Reduced 50% 68% 67.9% 58%
Left 4 16 44 270

% Reduced* 100% 92% 87.6% 64.9%
Left* 0 4 17 226

ratios up to 30%. Besides,MalWhiteout can identify most of
the actual mislabels from VirusTotal at different thresholds,
reflecting its practical benefits in the context of threshold-
based VirusTotal labeling.

5.3 RQ2: The Effectiveness of Design Decisions

In the design of MalWhiteout, we have incorporated the idea
of ensemble learning and considered inter-app relations based on
app developers, aiming to improve its accuracy of noise detection.
However, it is open to investigation how useful these design de-
cisions can be. Thus, we study the result of each case in order to
understand the effect of each component. First, we have selected
three malware detection approaches and extracted features for each.
In fact, for each approach, we also use CL to wrap its classification
model and find potential noises, as practiced in the preliminary
experiment (see § 3.2). To enable ensemble learning, we use a meta-
learner to combine the out-of-sample predicted probabilities made
by base learners and use CL to find potential noises. By comparing
the results of the above models (i.e., three separate models and an
ensemble model), we can learn whether and to what extent ensem-
ble learning has made a difference. At last, we perform a partial
adjustment of the noise detection results using developer-based app
relation. Thereby, we can understand whether and to what extent
the app relation has contributed by comparing the results before
and after the adjustment.

Table 4 shows the comparison results at different noise ratios,
where the optimal value of each metric is bolded. Column 3-5

MalWhiteout: Reducing Label Errors in Android Malware Detection ASE ’22, October 10–14, 2022, Rochester, MI, USA

present the results of noise detection using each of the three in-
dividual methods, which exhibit their varying detection abilities.
Overall, Drebin works best. The Column 6 shows the detection
results using the ensemble learning approach, which exhibits a
significant improvement compared to when using a single model.
This shows that ensemble learning can mitigate the inherent bias
from each model, making the noise estimation capability of CL
more robust. The last column shows the detection results after
noise adjustment using developer-based app relation. Compared to
Column 6, it can be seen that app relation helps reduce the number
of false positives, improving the precision of noise detection.

Table 4: Noise detection results obtained at each case.

NoiseRatio Metric Separate Models
(# Noises) MalScan CSBD Drebin Ensemble App Relation

5%
(580)

TP 515 479 561 558 566

FP 154 137 53 38 26

F1 0.823 0.800 0.938 0.948 0.964

Acc 0.981 0.979 0.994 0.995 0.996

10%
(1160)

TP 1000 991 1118 1116 1130

FP 273 298 84 63 42

F1 0.821 0.809 0.946 0.953 0.968

Acc 0.963 0.960 0.989 0.991 0.994

15%
(1740)

TP 1482 1466 1653 1654 1661

FP 456 511 145 114 72

F1 0.804 0.788 0.934 0.943 0.956

Acc 0.938 0.932 0.980 0.983 0.987

20%
(2320)

TP 1963 1971 2177 2195 2196

FP 634 761 190 159 112

F1 0.798 0.780 0.929 0.939 0.949

Acc 0.914 0.904 0.971 0.975 0.980

25%
(2900)

TP 2334 2372 2681 2706 2690
FP 853 936 282 229 170

F1 0.767 0.764 0.914 0.927 0.934

Acc 0.877 0.874 0.957 0.963 0.967

30%
(3480)

TP 2532 2676 3164 3169 3142
FP 1184 1220 374 314 260

F1 0.704 0.725 0.901 0.910 0.913

Acc 0.816 0.825 0.940 0.946 0.948

Answer to RQ2: Both the design of ensemble learning based
noise detection and app relation based adjustment have made
a positive contribution to MalWhiteout. Ensemble learning
significantly improves detection over using separate models,
and app relation further helps reduce false positives.

5.4 RQ3: Improvement of Malware Detection

As aforementioned, a correctly labelled dataset is highly important
for machine learning based Android malware detection. We next
verify the impact of training sets of varying quality on malware
detection efforts to see howmuchMalWhiteout can help improve
the performance of existing techniques.

We first divide the ground truth dataset into two parts: 70%
of it serves as the training set and 30% as the test set. For the
training set, we make three separate training sets of varying quality:
(1) Correctly-labelled dataset, i.e., the 70% ground truth training
set. (2) Noisily-labelled dataset, i.e., we randomly select a certain
percentage of apps from the training set and flip their labels to
generate a noisily-labelled dataset. Here we set the noise ratio to

10%. (3) Processed dataset, i.e., after MalWhiteout revises the
labels in noisily-labelled dataset, we refer to it as the processed
dataset. Next, we train a machine learning based Android malware
detection approach using either the correctly-labelled dataset, the
noisily-labelled dataset, or the processed dataset, and evaluate the
performance of each dataset using the 30% ground truth test set.

In this experiment, we also use Drebin, CSBD andMalScan, as the
malware detection approach, respectively, for evaluation. For each
approach, it is trained on each of the three datasets and tested on the
same test set (using its specific features and classifier). This allows
us to understand the impact of the quality of the training set on the
performance of a machine learning based malware detection ap-
proach. We use the composite metric F-measure to characterize the
performance of the classification model, with a higher F1 value indi-
cating better classification ability. Figure 8 shows the performance
(F1) of the models trained on the correctly-labelled, noisily-labelled
and processed training sets separately, for each malware detection
approach. We can observe that all the three approaches yielded
minimum F1 values on the noisily-labelled dataset, which were
94.55%, 86.12%, and 92.45%, respectively, indicating that the noisy
datasets can impair the capacity of existing machine learning based
malware detection efforts. Besides, when trained with the processed
dataset (i.e., after the labels being revised byMalWhiteout), the
models all achieved significant improvements in malware detec-
tion. The improved F1 scores are closer to the upper bounds, i.e.,
the results obtained by training with the correctly-labelled dataset.
Specifically, Drebin was improved 94.55% to 96.28% (upper bound
97.04%), CSBD from 86.12% to 92.82% (upper bound 95.38%) and
MalScan from 92.45% to 93.91% (upper bound 95.43%). The F1 of
the three models improved by 1.83% (Drebin), 7.78% (CSBD) and
1.58% (MalScan) respectively. Likewise, if we set the noise ratio to
20% in the training set, we observe that the F1 of the three mod-
els improved by 2.4% (Drebin), 7.89% (CSBD), and 7.21% (MalScan)
respectively. This demonstratesMalWhiteout’s positive contri-
bution to the existing machine learning based Android malware
detection efforts in our research community.

0.9455

0.8612

0.9245

0.9628

0.9282
0.9391

0.9704
0.9538 0.9543

0.7

0.75

0.8

0.85

0.9

0.95

1

Drebin CSBD MalScan

F1

Malware Detection Approach

Noisily_labeled Processed Correctly_labeled

Figure 8: Performance comparison of Android malware de-

tection approaches trained on different datasets.

Answer to RQ3: A noisy training set can negatively impact
the performance of existing machine learning based malware
detection techniques. MalWhiteout can improve the perfor-
mance of these methods by dealing with noise in the dataset.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Liu Wang, Haoyu Wang, Xiapu Luo, and Yulei Sui

Table 5: Comparison results for noises from random flip-

ping.

Noise Ratio (# Noises) Metric MalWhiteout MalWhiteout (Drebin) DT

5%
(580)

TP 566 564 402
FP 26 39 232

% Reduced 93.1% 90.5% 29.3%
Left 40 55 410
Hours 0.42 0.42 29.8h

10%
(1160)

TP 1130 1125 967
FP 42 62 334

% Reduced 93.8% 91.6% 54.6%
Left 72 97 527
Hours 0.5 0.5 58.2h

15%
(1740)

TP 1661 1651 1535
FP 72 91 376

% Reduced 91.3% 89.7% 66.6%
Left 151 180 581
Hours 0.67 0.67 88.3h

20%
(2320)

TP 2196 2170 2066
FP 112 130 331

% Reduced 89.8% 87.9% 74.8%
Left 236 280 585
Hours 0.64 0.64 109.3h

25%
(2900)

TP 2690 2659 2503
FP 170 202 324

% Reduced 86.9% 84.7% 75.1%
Left 380 443 721
Hours 0.64 0.64 145.3h

30%
(3480)

TP 3142 3125 3014
FP 260 303 355

% Reduced 82.8% 81.1% 76.4%
Left 598 658 821
Hours 0.68 0.68 170h

5.5 RQ4: Compare with State-of-the-art

To the best of our knowledge, Differential Traning [47] (DT) is
the only existing work on noise reduction for Android malware
datasets. Therefore, we use DT as the baseline and compare with it
in terms of noise detection effectiveness and efficiency.

The core idea of DT is to build two deep learning classification
models (i.e., noise detection models), one is trained using the whole
training set of apps (called WS model) and the other is trained
on the randomly down-sampled set of apps (called DS model). It
uses a heuristic method to distinguish wrongly-labeled samples
from correctly-labeled samples by outlier detection on loss vectors
generated by the intermediate states of the two models. The labels
of the outlier samples are flipped with a certain probability in each
iteration, until the fluctuation of the estimated noise ratio becomes
smaller than a certain threshold over several iterations. Thus it
achieves noise reduction usually requiring a number of iterations. In
the pre-processing phase of DT, a machine learning based malware
detection approach is selected to transform the raw app files into
numeric feature vectors. In our experiments conducted in this paper,
we select Drebin malware detection to extract feature vectors which
are fed into DT, and use Multi-Layer Perceptron (MLP) with two
hidden layers as noise detection models, following the paper [47].

In this experiment, we seek to compare the performance of DT
andMalWhiteout. Given that DT uses feature vectors specified
by Drebin, we also add a control experiment using only Drebin’s
features (i.e. omitting the ensemble learning component) for the
sake of fairness. The comparative results are presented in Table 5
and Table 6. We bold the optimal value of each metric.

5.5.1 The Effectiveness of Noise Detection. We first focus on the
effectiveness of noise detection. Based on data setup in §5.2, we

Table 6: Comparison results for noises from VirusTotal.

Threshold Metric MalWhiteout MalWhiteout DT(# Noises) (Drebin)

2
(8)

TP 8 8 4
FP 4 15 257

% Reduced 50% - -
Left 4 15 261
Hours 0.5h 0.5h 6.9h

5
(50)

TP 46 46 31
FP 12 18 289

% Reduced 68% 56% -
Left 16 22 308
Hours 0.52h 0.52h 25.8h

10
(137)

TP 120 118 67
FP 27 34 344

% Reduced 67.9% 61.3% -
Left 44 53 414
Hours 0.56h 0.56h 35.4h

20
(643)

TP 414 409 247
FP 44 96 369

% Reduced 58% 48.7% -
Left 270 330 765
Hours 0.6h 0.6h 38.9h

also design two sets of experiments, i.e., detect label noises from (1)
random flipping and (2) VirusTotal labeling. As shown in Table 5
and Table 6, MalWhiteout achieves much better results than DT
in all cases, resulting in more true positives, less false positives, a
greater proportion of noise being reduced and a smaller amount
of noise left. Even with only Drebin’s features, i.e. omitting the
ensemble learning process, our approach can still achieve better
results than DT (see the last two columns). For noises from random
flipping (see Table 5), the difference in effect is particularly notice-
able when the noise ratio is relatively low. For example, at a noise
ratio of 5%, DT can only reduce noises by less than 30%, whereas
MalWhiteout is able to reduce by more than 90% (achieving 218%
improvement). With the noise ratio increases, DT works better. At
a noise ratio of 30%, DT reduces 76.4% of the wrong labels, which
is getting closer to MalWhiteout’s 81.1% and 82.8% (about 8%
improvement). For mislabels from VirusTotal labeling (see Table 6),
MalWhiteout performs remarkably better than DT. For example,
when threshold=2,MalWhiteout performed worst reducing the
noise by 50%, while DT produced an intolerable number of false
positives and even exacerbated the original noise level. Therefore,
MalWhiteout is much more effective than DT.

5.5.2 The Efficiency of Noise Detection. We next take a look at
the time cost (# Hours) of the two approaches, which indicates
the efficiency and the feasibility in practice. For MalWhiteout,
the operations can be divided into three phases: pre-processing
(including feature extraction and signature extraction for samples),
ensemble-based noise detection and app relation based adjustment.
Figure 9 shows the timeline of MalWhiteout’s workflow. The
most time-consuming part lies in the feature extraction, with Drebin
taking the longest time of 22.5 hours in total. Note that during
the pre-processing phase we process the three malware detection
methods in parallel, thus the pre-processing takes 22.5 hours in
total. Nevertheless, since the same feature extraction (by Drebin)

MalWhiteout: Reducing Label Errors in Android Malware Detection ASE ’22, October 10–14, 2022, Rochester, MI, USA

Feature Extraction Signature Extraction

MalScan: 13.8h

CSBD: 18h

Drebin: 22.5h

Ensemble-based Noise Detection

35m

Cross Validation

App Relation based Alignment

Timeline

Figure 9: Timeline of MalWhiteout’s workflow.

step is also required for DT, the twomethods take equal time for pre-
processing and we do not take this into account in the comparison.
Therefore, the time duration in Table 5 and Table 6 (# Hours) refers
to the time spent on the noise detection process that is performed
after the pre-processing step has been completed. For DT, it uses a
stop criterion that is similar to the early stopping. Since it reduces
the label noises in a gradual way in multiple iterations, the more
noises in the dataset the more iterations it requires and the longer
time it takes. We can see thatMalWhiteout has a stable time cost
within 40 minutes (0.68 hour), while DT takes 29.8-170 hours as
the noise ratio increase from 5% to 30%. Overall, MalWhiteout is
much more efficient compared to DT, being 70 to 249 times faster.

Answer to RQ4: MalWhiteout outperforms the state-of-
the-art (i.e., DT) in terms of both the detection effectiveness
and efficiency (time cost). This makesMalWhiteout more
appealing for practical usage.

6 THREATS TO VALIDITY

Despite the promising results, this work has three potential threats
to validity. First, we make an assumption that the majority of sam-
ples in the dataset used for malware detection are correctly labelled,
thus the maximum noise ratio is taken to be 30% in our experiments.
There is a chance that the assumption could be violated but we
believe it fits the vast majority of situations. Second, we leverage
Confident Learning to estimate noise for malware detection due to
its encouraging performance in our preliminary study. However,
there are actually other noise handling methods in the research
community that could be ported over. We will try more approaches
in our future work. Third, we use the developer-based app relation
to assist in noise detection, using a majority voting mechanism to
infer the samples’ true labels. This allows most of the samples to
be labeled correctly. However, we acknowledge that there can exist
corner cases where the labels are mistakenly revised, e.g., a real
benign app released by a developer who releases a lot of malicious
apps will also be considered as malware. Besides, there can be ex-
treme situations where no apps or very few apps share a developer.
In that case the app relation based adjustment would not work.
Nevertheless, our experiment indicates that even without this step,
the detection results produced by ensemble learning look good.

7 RELATEDWORK

7.1 Android Malware Detection

Many Android malware detection studies incorporated traditional
machine learning methods such as K-nearest Neighbours (KNN),
Support Vector Machines (SVM), Decision Trees, Random Forests
(RF) and Naive Bayesian (NB) [5, 6, 8, 13, 17, 26, 32, 44, 45, 48].
For example, DroidAPIMiner [5] extracted features relying on the
API, package, and parameter level information from apps and used
different algorithms (e.g., RF, KNN, SVM, etc.) for classification.
In addition, an increasing number of researchers are using deep
learning methods for Android malware detection. For example,
MalDozer [22] uses features such as the raw sequences of app’s API
method calls and relies on deep learning techniques to automatically
learn patterns to detect Android malware.

7.2 Label Noise Reduction

A large number of approaches have been proposed to manage noisy
labels using traditional machine learning techniques (e.g., KNN, out-
lier detection) [11, 12, 37]. Besides, researchers have devoted signif-
icant effort to improve the robustness of conventional models (e.g.,
SVM, DT) to the noisy labels [9, 15]. In recent years, an increasing
number of studies are using deep learning techniques to overcome
the issue of noisy labels [19, 27, 35]. Many efforts [18, 20, 24, 33, 49]
focused on the sample selection research direction, i.e., identifying
correctly-labeled examples from noisy data via multi-network or
multi-round learning. A number of studies [10, 16, 34, 46] have
attempted to modify the architecture to model the label transition
matrix of noisy datasets, e.g., adding a noise adaptation layer at the
top of the softmax layer or designing a new dedicated architecture.
Despite all these efforts to deal with noisy labels, there are many
challenges in applying them to solve the noise problem in malware
detection, such as intolerant false positives. Nevertheless, we admit
that advanced noise reduction techniques in the machine learning
community can be complementary to this work.

8 CONCLUSION

In this paper, we present a novel noise detection method, Mal-
Whiteout, to reduce label noises in datasets for machine learn-
ing based Android malware detection. We exploit existing noise
handling techniques, migrating Confident Learning method to the
malware detection domain. We further incorporate the idea of en-
semble learning and app relation based adjustment to improve
MalWhiteout’s robustness. We conduct a comprehensive evalua-
tion on a curated reliable dataset. Experimental results indicate that
MalWhiteout is capable of detecting noise with high accuracy
and is more effective and greatly faster than the state-of-the-art.
Moreover,MalWhiteout can improve the performance of existing
machine learning based Android malware detection efforts.

ACKNOWLEDGMENTS

This work was supported in part by National Key R&D Program of
China (2021YFB2701000), the National Natural Science Foundation
of China (grant No.62072046), the Fundamental Research Funds for
the Central Universities (HUST 3004129109), and Hong Kong RGC
Projects (No. PolyU15219319, PolyU15222320, PolyU15224121).

ASE ’22, October 10–14, 2022, Rochester, MI, USA Liu Wang, Haoyu Wang, Xiapu Luo, and Yulei Sui

REFERENCES

[1] 2019. Stacking in Machine Learning. https://www.geeksforgeeks.org/stacking-
in-machine-learning/.

[2] 2022. Koodous. https://koodous.com.
[3] 2022. Publication Trends. https://app.dimensions.ai/discover/publication.
[4] 2022. VirusTotal. https://www.virustotal.com/.
[5] Yousra Aafer, Wenliang Du, and Heng Yin. 2013. Droidapiminer: Mining api-level

features for robust malware detection in Android. In International conference on
security and privacy in communication systems. Springer, 86–103.

[6] Kevin Allix, Tegawendé F Bissyandé, Quentin Jérome, Jacques Klein, State Radu,
and Yves Le Traon. 2016. Empirical assessment of machine learning-based
malware detectors for Android. Empirical Software Engineering 21, 1 (2016),
183–211.

[7] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
Androzoo: Collecting millions of Android apps for the research community. In
2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR).
IEEE, 468–471.

[8] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of Android
malware in your pocket. In NDSS, Vol. 14. 23–26.

[9] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2011. Support vector machines
under adversarial label noise. In Asian conference on machine learning. PMLR,
97–112.

[10] Xinlei Chen and Abhinav Gupta. 2015. Webly supervised learning of convolu-
tional networks. In Proceedings of the IEEE international conference on computer
vision. 1431–1439.

[11] Sarah Jane Delany, Nicola Segata, and Brian Mac Namee. 2012. Profiling instances
in noise reduction. Knowledge-Based Systems 31 (2012), 28–40.

[12] Dragan Gamberger, Nada Lavrac, and Saso Dzeroski. 2000. Noise detection and
elimination in data preprocessing: experiments in medical domains. Applied
artificial intelligence 14, 2 (2000), 205–223.

[13] Joshua Garcia, Mahmoud Hammad, Bahman Pedrood, Ali Bagheri-Khaligh, and
Sam Malek. 2015. Obfuscation-resilient, efficient, and accurate detection and
family identification of Android malware. Department of Computer Science, George
Mason University, Tech. Rep 202 (2015).

[14] Aritra Ghosh, Himanshu Kumar, and PS Sastry. 2017. Robust loss functions under
label noise for deep neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 31.

[15] Aritra Ghosh, Naresh Manwani, and PS Sastry. 2017. On the robustness of
decision tree learning under label noise. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 685–697.

[16] Jacob Goldberger and Ehud Ben-Reuven. 2016. Training deep neural-networks
using a noise adaptation layer. (2016).

[17] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014.
Checking app behavior against app descriptions. In Proceedings of the 36th inter-
national conference on software engineering. 1025–1035.

[18] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang,
and Masashi Sugiyama. 2018. Co-teaching: Robust training of deep neural net-
works with extremely noisy labels. Advances in neural information processing
systems 31 (2018).

[19] Dan Hendrycks, Mantas Mazeika, DuncanWilson, and Kevin Gimpel. 2018. Using
trusted data to train deep networks on labels corrupted by severe noise. Advances
in neural information processing systems 31 (2018).

[20] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. 2018. Mentor-
net: Learning data-driven curriculum for very deep neural networks on corrupted
labels. In International Conference on Machine Learning. PMLR, 2304–2313.

[21] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal
Shankar, Rekha Bachwani, Anthony D Joseph, and J Doug Tygar. 2015. Better
malware ground truth: Techniques for weighting anti-virus vendor labels. In
Proceedings of the 8th ACMWorkshop on Artificial Intelligence and Security. 45–56.

[22] ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid Derhab, and Djedjiga
Mouheb. 2018. MalDozer: Automatic framework for Android malware detection
using deep learning. Digital Investigation 24 (2018), S48–S59.

[23] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David
Lo, and Lorenzo Cavallaro. 2017. Understanding Android app piggybacking: A
systematic study of malicious code grafting. IEEE Transactions on Information
Forensics and Security 12, 6 (2017), 1269–1284.

[24] Eran Malach and Shai Shalev-Shwartz. 2017. Decoupling "when to update" from
"how to update". Advances in Neural Information Processing Systems 30 (2017).

[25] Naresh Manwani and PS Sastry. 2013. Noise tolerance under risk minimization.
IEEE transactions on cybernetics 43, 3 (2013), 1146–1151.

[26] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2017. MAMADROID: Detecting
Android malware by building markov chains of behavioral models. In Proceedings
of the Annual Symposium on Network and Distributed System Security (NDSS).

[27] Aditya Krishna Menon, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
2019. Can gradient clipping mitigate label noise?. In International Conference on

Learning Representations.
[28] Curtis Northcutt, Lu Jiang, and Isaac Chuang. 2021. Confident learning: Esti-

mating uncertainty in dataset labels. Journal of Artificial Intelligence Research 70
(2021), 1373–1411.

[29] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and
Lizhen Qu. 2017. Making deep neural networks robust to label noise: A loss
correction approach. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 1944–1952.

[30] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. TESSERACT: Eliminating experimental bias in malware
classification across space and time. In 28th USENIX Security Symposium (USENIX
Security 19). 729–746.

[31] Silvia Sebastian and Juan Caballero. 2020. Towards attribution in mobile markets:
Identifying developer account polymorphism. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 771–785.

[32] Jingya Shen, Zhenxiang Chen, Shanshan Wang, Yuhui Zhu, and Muham-
mad Umair Hassan. 2018. DroidDetector: a traffic-based platform to detect
Android malware using machine learning. In Third International Workshop on
Pattern Recognition, Vol. 10828. International Society for Optics and Photonics,
108280N.

[33] Yanyao Shen and Sujay Sanghavi. 2019. Learning with bad training data via
iterative trimmed loss minimization. In International Conference on Machine
Learning. PMLR, 5739–5748.

[34] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and Rob
Fergus. 2014. Training convolutional networks with noisy labels. arXiv preprint
arXiv:1406.2080 (2014).

[35] Ryutaro Tanno, Ardavan Saeedi, Swami Sankaranarayanan, Daniel C Alexander,
and Nathan Silberman. 2019. Learning from noisy labels by regularized estimation
of annotator confusion. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 11244–11253.

[36] Kurt Thomas, Juan A Elices Crespo, Ryan Rasti, Jean-Michel Picod, Cait Phillips,
Marc-André Decoste, Chris Sharp, Fabio Tirelo, Ali Tofigh, Marc-Antoine
Courteau, et al. 2016. Investigating Commercial Pay-Per-Install and the Dis-
tribution of Unwanted Software. In 25th USENIX Security Symposium (USENIX
Security 16). 721–739.

[37] Jaree Thongkam, Guandong Xu, Yanchun Zhang, and Fuchun Huang. 2008. Sup-
port vector machine for outlier detection in breast cancer survivability prediction.
In Asia-Pacific Web Conference. Springer, 99–109.

[38] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li
Li, Juan Tapiador, Jingcun Cao, and Guoai Xu. 2018. Beyond Google play: A
large-scale comparative study of Chinese Android app markets. In Proceedings of
IMC 2018. 293–307.

[39] HaoyuWang, Junjun Si, Hao Li, and Yao Guo. 2019. RmvDroid: Towards a reliable
Android malware dataset with app metadata. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 404–408.

[40] Liu Wang, Ren He, Haoyu Wang, Pengcheng Xia, Yuanchun Li, Lei Wu, Yajin
Zhou, Xiapu Luo, Yulei Sui, Yao Guo, et al. 2021. Beyond the virus: a first look
at coronavirus-themed Android malware. Empirical Software Engineering 26, 4
(2021), 1–38.

[41] LiuWang, HaoyuWang, RenHe, Ran Tao, GuozhuMeng, Xiapu Luo, and Xuanzhe
Liu. 2022. MalRadar: Demystifying Android Malware in the New Era. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 6, 2 (2022), 1–27.

[42] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep
ground truth analysis of current Android malware. In International conference
on detection of intrusions and malware, and vulnerability assessment. Springer,
252–276.

[43] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep
ground truth analysis of current Android malware. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
252–276.

[44] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.
2012. Droidmat: Android malware detection through manifest and api calls
tracing. In 2012 Seventh Asia Joint Conference on Information Security. IEEE,
62–69.

[45] Yueming Wu, Xiaodi Li, Deqing Zou, Wei Yang, Xin Zhang, and Hai Jin. 2019.
Malscan: Fast market-widemobile malware scanning by social-network centrality
analysis. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 139–150.

[46] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. 2015. Learning
from massive noisy labeled data for image classification. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 2691–2699.

[47] Jiayun Xu, Yingjiu Li, and Robert H Deng. 2021. Differential training: A generic
framework to reduce label noises for Android malware detection. (2021).

[48] Suleiman Y Yerima, Sakir Sezer, and IgorMuttik. 2014. Androidmalware detection
using parallel machine learning classifiers. In 2014 Eighth international conference
on next generation mobile apps, services and technologies. IEEE, 37–42.

[49] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama.
2019. How does disagreement help generalization against label corruption?. In

https://www.geeksforgeeks.org/stacking-in-machine-learning/
https://www.geeksforgeeks.org/stacking-in-machine-learning/
https://koodous.com
https://app.dimensions.ai/discover/publication
https://www.virustotal.com/

MalWhiteout: Reducing Label Errors in Android Malware Detection ASE ’22, October 10–14, 2022, Rochester, MI, USA

International Conference on Machine Learning. PMLR, 7164–7173.
[50] Yajin Zhou andXuxian Jiang. 2012. DissectingAndroidmalware: Characterization

and evolution. In 2012 IEEE symposium on security and privacy. IEEE, 95–109.

[51] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and
Gang Wang. 2020. Measuring and modeling the label dynamics of online anti-
malware engines. In 29th USENIX Security Symposium (USENIX Security 20).
2361–2378.

	Abstract
	1 Introduction
	2 The Uncertainty of Android Malware Labelling
	2.1 Malware Labelling based on VirusTotal
	2.2 Preliminary Estimation of the Uncertainty

	3 Key Ideas of MalWhiteout
	3.1 Idea-1: The Applicability of Traditional Noise Estimation Techniques
	3.2 Idea-2: The Power of Multiple Models
	3.3 Idea-3: App Specific Features are Helpful

	4 The Design of MalWhiteout
	4.1 Ensemble-based Noise Detection
	4.2 App Relation Based Adjustment

	5 Evaluation
	5.1 Datasets and Metrics
	5.2 RQ1: Overall Effectiveness
	5.3 RQ2: The Effectiveness of Design Decisions
	5.4 RQ3: Improvement of Malware Detection
	5.5 RQ4: Compare with State-of-the-art

	6 Threats to Validity
	7 Related Work
	7.1 Android Malware Detection
	7.2 Label Noise Reduction

	8 Conclusion
	Acknowledgments
	References

