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Abstract

Developing effective distributed representa-
tions of source code is fundamental yet chal-
lenging for many software engineering tasks
such as code clone detection, code search,
code translation and transformation. However,
current code embedding approaches that rep-
resent the semantic and syntax of code in a
mixed way are less interpretable and the re-
sulting embedding can not be easily general-
ized across programming languages. In this
paper, we propose a disentangled code repre-
sentation learning approach to separate the se-
mantic from the syntax of source code under
a multi-programming-language setting, obtain-
ing better interpretability and generalizability.
Specially, we design three losses dedicated to
the characteristics of source code to enforce
the disentanglement effectively. We conduct
comprehensive experiments on a real-world
dataset composed of programming exercises
implemented by multiple solutions that are se-
mantically identical but grammatically distin-
guished. The experimental results validate
the superiority of our proposed disentangled
code representation, compared to several base-
lines, across three types of downstream tasks,
i.e., code clone detection, code translation, and
code-to-code search.

1 Introduction

Code representation learning has become an essen-
tial technique to support various software engineer-
ing tasks. Most of previous code representation
learning approaches (Chen and Zhou, 2018; Jain
et al., 2020; Nie et al., 2020) focus on a particular
programming language, while learning code rep-
resentations for multiple programming languages,
though challenging, is an important step towards
more generalizable and interpretable code embed-
dings. In principle, code snippets can be seen as

∗Corresponding author: Yin Zhang

Figure 1: We disentangle the code representation into
semantic and syntactic parts. The semantic part, which
is relevant to code functionality but is often indepen-
dent of a specific language, can be reused for semantic-
related tasks across programming languages. The syn-
tax part, which is related to a particular language
but does not represent the code functionality, can be
reused to control syntactic transformations for cross-
programming language generation tasks.

code token sequences where their structural infor-
mation often manifests as tree or graph data struc-
tures like AST (Abstract Syntax Tree). The down-
stream tasks often take full advantage of different
code modalities (DQ et al., 2019) (e.g., structural
information and textual tokens in the form of natu-
ral languages) to achieve better performance.

It is noteworthy that syntax-level noise is an im-
portant issue in cross-language semantic-related
tasks. Simply mixing textual token information
and structural information of code (e.g., ASTs)
often can not boost the performance on the cross-
language code tasks. In this paper, we investigate a
new approach that disassociates the latent seman-
tic and syntactic representations of multi-lingual
code snippets. The semantic representation exclud-
ing syntax information is more suitable for cross-
language semantic-related code tasks as shown in
Figure 1. We therefore study a new multi-lingual
AST-guided code disentanglement technique called
CODEDISEN, in order to provide a disentangled
representation of code snippets that separates the la-
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tent syntax representations for masked ASTs from
its latent semantic counterpart for solving a partic-
ular programming exercise. Our new multi-lingual
code representation disentanglement approach ef-
fectively utilises available linguistic resources, i.e.,
ASTs and textual code tokens. Overall, the main
contributions of this paper are as follows:
• To the best of our knowledge, it is the first time

that we formulate the code representation learning
problem from the perspective of disentangling code
semantics and syntax information across multiple
programming languages.
•We propose an AST-guided disentangled code

representation learning approach for multiple pro-
gramming languages. We employ masked AST
information to guide the disentanglement of code
semantics and syntax, and design a cross-language
reconstruction loss and a posterior distribution loss
for modeling the fact that programs written in dif-
ferent languages for the same problem can share
the similar program semantic. Furthermore, atten-
tive code position loss can effectively fuse AST
information into an effective code representation.
• To validate the effectiveness of our approach,

we have conducted extensive experiments on three
downstream tasks (i.e., code-to-code search, code
translation and clone detection). Experimental re-
sults show that the latent semantic and syntax rep-
resentation learned by our approach are nearly or-
thogonal, and the learnt disentangled semantic rep-
resentation can significantly boost the performance
of the downstream cross-language tasks.

2 Preliminaries

2.1 Code Syntax and Semantics
The Abstract Syntax Tree (AST) is an abstract
representation of the syntax structure of source
code. As shown in Figure 2, compilation nodes,
e.g. augment list, represent syntactic informa-
tion, and leaf variable nodes, e.g. range, repre-
sent semantic information. In this paper, we parse
the source codes into ASTs by using tree-sitter1, an
open source syntax parser, which supports multiple
programming languages. We traverse the nodes
of an AST based on the depth first algorithm, and
consider the traversed paths as syntax representa-
tion of the code snippets. Using AST paths can
significantly reduce the learning effort to extract
grammatical information of code. To restrict the
AST paths to syntax information only, we masked

1https://tree-sitter.github.io

Figure 2: Python and C++ code snippets with their
ASTs for the same problem. The solid boxes repre-
sent the leaf nodes. Note that the compilation nodes
for a=a*2 are almost identical.

leaf nodes during the traversal because the seman-
tic information of the code snippets often comes
from the leaf variable nodes. Introducing masked
AST paths to CODEDISEN ensures that our ap-
proach can take some semantic meanings from the
textual tokens in code snippets rather than ASTs,
which can be used to learn the general syntax rep-
resentation adhering to a specific language.

2.2 Problem Statement

We denote code snippets for solving the same pro-
gramming problem j as {〈x1, . . . , xn〉 |xi ∈ Pj},
where xi is the solution of programming language
i. In our experiments, we tested Java, Python, C++
and C#, thus the number of languages is n = 4.
For each code snippet xi, we construct a raw rep-
resentation vector 〈xi, xasti 〉, where xi denotes a
sequence of tokens, and xasti represents syntax in-
formation derived from the abstract syntax tree of
code snippet xi.

For the same problem j, the code snippets
x1, . . . , xn of multiple languages share the same se-
mantic, although they have different programming
language syntax zi. Variants of Variational Au-
toEncoders (VAE) have been proposed to encode
the raw vector 〈xi, xasti 〉 into the latent representa-
tion. We aim to disentangle latent representation
into two untangled parts: semantic y and syntax z
latent representation of code. Formally, the objec-
tive of encoding is

〈
xi, x

ast
i

〉
→ 〈yi, zi〉 for each

code snippet. For that purpose, we have to add
multiple additional losses to the VAE architecture
to enforce the effective disentanglement of code
semantic and syntax. Next, we will introduce the
design of multiple additional losses to effectively
enforce disentanglement for code representation
learning under the multi-lingual setting.

https://tree-sitter.github.io
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Figure 3: The reconstruction of code snippets written in multiple programming languages for the same problem.
Enc0 corresponds to the Semantic (Y) Encoder shared parameters among all programming languages. Enci
corresponds to the Syntax (Z) Encoder dedicated to programming language i with independent parameters (IZ).
The KL divergence term is imposed to the semantic latent variable y to enforce the alignment of different code
snippets in the semantic space. The decoder also shares the parameters among all programming languages.

3 CODEDISEN Approach

Our approach is a variant of notable VAE architec-
ture. In this paper, we start from the vMF-Gaussian
Variational Autoencoder (VGVAE) model (Chen
et al., 2019b), which is proposed to disentangle
textual semantics from language syntax within the
same human language. Our problem setting differs
from disentanglement setting of human language
in that: (1) We focus on dealing with multiple pro-
gramming languages, instead of a single language.
(2) Unlike human languages, programming lan-
guage is a formal symbol system and has much
stricter syntax rules than human languages, so we
can make use of the AST information derived from
a code snippet. To handle multiple programming
languages, we propose CODEDISEN which adds
more inputs and multiple losses to the VGVAE
to effectively enforce the disentanglement of code
semantics and syntax.

Figure 3 shows the overall architecture of our
CODEDISEN approach. Unlike the unsupervised
VGVAE, our approach introduces the masked AST
xasti that just retains the syntax information and
removes almost all semantic information by mask-
ing leaf nodes. xasti provides a strong supervision
signal for disentangling code semantics yi from
code syntax zi. For brevity, we will describe the
factorization process from perspective of single
code snippet. Following the conditional indepen-
dence assumption in the graphical model, the joint
probability pθ(x, xast, y, z) can be factorized as:

pθ(x, x
ast, y, z)

= pθ(y)pθ(z)

T∏
t=1

pθ(wt|w1:t−1, y, z)p(x
ast|x),

(1)

where wt is the t-th word of x and
pθ(wt|w1:t−1, y, z) is given by a softmax over a
vocabulary V , p(xast|x) is a deterministic transfor-
mation process. Different from the VGVAE vari-
ants (Chen et al., 2019b), we propose the following
factorization qϕ(y, z|x, xast) = qϕ(y|x)qϕ(z|xast)
to approximate the posterior when applying neural
variational inference, since xast just retains the
syntax information, and x contains more semantic
information that is missing in compilation nodes.
The objective of VAE is to maximize a lower
bound of marginal log-likelihood, thus the basic
loss L0 is written as:

L0 = − E
y,z∼ qθ(y|x),qθ(z|xast)

log pθ(x|y, z)

+ KL (qθ(y|x) ‖ pθ(y)) + KL
(
qθ(z|xast) ‖ pθ(z)

)
.

(2)

3.1 Encoders and Decoder

In this paper, we assume that qθ(y|x) follows a
vMF distribution (Chen et al., 2019b) and pθ(y)
follows the uniform distribution vMF (·; 0). Simi-
larly, we assume that qθ(z|xast) follows a Gaussian
distributionN (µβ(x

ast), diag(σβ(x
ast))) and that

the prior pθ(z) is N (0; Id), where Id is a d × d
identity matrix. Concretely, we implement the se-
mantic encoder Enc0 (i.e., qϕ(y|x)) shared among
all languages as a bidirectional long short-term
memory network (BiLSTM) followed by a 3-layer
feedforward neural network. Similarly, we adopt
an independent BiLSTM model followed by a 3-
layer feedforward network for each syntax encoder
Enci adhering to programming language i (i.e.,
qϕi(zi|xasti )). We also select LSTM model as the
shared decoder of our generative model. As shown
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in Figure 3, at the decoding stage, we concatenate
the syntactic variable z with the previous word’s
embedding as the input to calculate hidden state h′

since grammatical information is more influenced
by code token positions. Furthermore, we concate-
nate the semantic variable y with hidden state h′

to predict the code token at each step, which could
make full use of semantic information.

3.2 Losses for Disentanglement

In order to effectively enforce the disentanglement
of code semantics and syntax, we design three ad-
ditional loss terms, in addition to the loss L0.

Cross-Language Reconstruction Loss Since
the code snippets {〈x0, x1, . . . , xn〉 |xi ∈ Pj}
solve the same problem of Pj , they should share
the same program semantics, inducing the cross-
language reconstruction loss. Concretely, we hope
that code snippet xi can be reconstructed from its
own syntax representation zi and semantic rep-
resentation yi. yi is derived from latent seman-
tic representations {yk|k 6= i} of code snippets
{xk|k 6= i} that do not use language i. Formally,
〈yi, zi〉 → 〈xi〉. If we can regenerate xi success-
fully, it means that {yi} share the almost same
program semantic for problem Pj , and zi encodes
language-specific syntax information of program-
ming language i.

As shown in Figure 3, at each step, we input
X = {x1, x2, . . . , xn}, which is a set of code snip-
pets that have the same program semantics pj for
problem j and are written in distinct programming
languages. Formally, the cross-language recon-
struction loss can be formulated as:

Lrec = −
n∑
i=1

E [log pθ(xi|yi, zi)] , (3)

where yi is calculated as:

yi = FLinear(fcat(Y i)), (4)

where Y i represents all the latent semantic vari-
ables except yi, i.e., Y i = {yk|k 6= i}, fcat(·) is
the function of concatenation, and FLinear aims to
fuse the concatenated vector to the same dimension
as yi, through a linear layer.

Posterior Distribution Loss Since all the code
snippets of n programming languages for the
same problem j share the same program seman-
tics pj , we expect that the posterior distribution

Figure 4: An illustration for the attentive position loss
of language i at encoding stage.

qϕi(yi|xi) of code snippets of programming lan-
guage i should be close to the mean posterior distri-
bution qm(ym|xm) of code snippets of all program-
ming languages.

Concretely, we employ KL terms (Chen and
Zhou, 2018) to constrain the distribution discrep-
ancy between qϕi(yi|xi) and qm(ym|xm) in the la-
tent space. Formally, The posterior distribution
constraint loss for programming language i is de-
fined as:

Ldist(i) = KL(qϕi(yi|xi) ‖ qm(ym|xm)),

qm(ym||xm) = vMF (

∑n
i=0 µ(xi)

n
,

∑n
i=0 κ(xi)

n2
),

(5)

where vMF is the same definition as in (Chen
et al., 2019b). The whole posterior distribution loss
function is defined as:

Ldist =
n∑
i=1

Ldist(i). (6)

Attentive Code Position Loss As observed
in (Chen et al., 2019b), the position information of
code token xi has a significant impact on its syntax,
such as import is always at position 0 in Python.
To better utilise ASTs to represent syntactic in-
formation, we introduce an Token2AST attention-
based code position loss (Lpos) to predict positions
of code tokens based on the embedding ei of xi and
the embedding easti of xasti . We map the easti to the
token side ei via attention mechanism as shown
in Figure 4. Firstly, there is a correlation between
the AST nodes and the tokens, e.g., variable a is
expected to have a higher weight with identifier in
Figure 2. Secondly, the length of AST sequences
is often much longer than that of the tokens in the
code snippet. Therefore the attentive code position
loss can fuse AST and token information to better
extract syntactic features.

We implement Lpos for both encoder and de-
coder to predict code tokens position i, which con-
sists of a 3-layer feedforward neural network f(·)
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with the input from the concatenation of the sam-
ples of the syntactic variable z and the attention
embedding vector eatt at input position i. The Lpos
and eatt are defined as:

eatt = softmax(
(ei ·Wq) · (easti ·WT

k )√
d

) · (easti ·Wv)

Lpos = − E
z∼qϕ(z|x)

[∑
i

log softmax(f([eatt; z]))t

]
,

(7)

where d is the dimension of the embedding, to in-
crease the training stability, softmax(·)t indicates
the probability of a code token at position t, and
Wq, Wk, and Wv respectively denotes the query,
key and value matrix in the attention mechanism.

Overall Objective We subsequently define the
overall objective as the combination of the afore-
mentioned basic loss and three additional losses for
disentanglement. The total loss function is formu-
lated as follows:

L = L0 + α · Lrec + β · Ldist + γ · Lpos. (8)

4 Experiment and Analysis

In this section, we aim to address the following
research questions: (1) Can the program seman-
tics and syntax be successfully disentangled by our
proposed CODEDISEN? (2) Will disentangled se-
mantics indeed improve the performance of down-
stream tasks? and (3) What is the generalizability
of disentangled code representation across different
programming languages? We also perform ablation
analysis to investigate the effect of each module
of the model, as well as a qualitative analysis of
detailed examples.

To answer the above questions, our experiments
will validate the following two principles: (1)
Equivalence of Semantics. Given a sequence of se-
mantically identical code snippets x1, . . . , xn and
their corresponding masked ASTs xast1 , . . . , xastn ,
CODEDISEN will yield yi and yi (see Eq. (4)),
if xi = Decode(yi, zi) = Decode(yi, zi), then
we have yi = yi, which means the shared seman-
tic encoder Enc0 extracts the same features for
those code snippets. Further, given xi 6= xj and
yi = yi = yj , we have zi 6= zj , which means
Enc1...n yields the respective syntax representa-
tions adhering to programming language 1 . . . n.
(2) Orthogonality of Semantic and Syntax Vector.
If the semantic vector y is completely disentan-
gled from the syntax vector z, just applying y to
downstream tasks will improve the performance,

compared to applying x to downstream tasks. How-
ever, just applying z will perform poorly.

Implementation Details As for building vocab-
ulary, we observe that more than 95% of the vo-
cabulary of multi-lingual code snippets are user-
defined variable names, with a tiny percentage of
keywords and compilation nodes with respect to
each programming language. Additionally, vari-
able names in different code snippets for the same
problem are likely to share semantics, which can
facilitate implicit alignment of the semantics of
code snippets of different languages. Hence, we
resort to constructing a shared vocabulary for all
code snippets and ASTs of all programming lan-
guages. More implementation details are referred
to the Appendix A.1.

4.1 Dataset and Downstream Tasks
For multi-lingual cross-training, we use the
CLCDSA dataset (Nafi et al., 2019), which is com-
posed of 26,000 code snippets across four program-
ming languages (i.e., Java, Python, C# and C++).
This dataset is collected from three open source
programming contest sites (i.e., AtCoder2, Google
CodeJam3 and CoderByte4). All solutions in this
dataset are functionally similar but written in dif-
ferent programming languages. In our experiments,
we choose Java, Python, C# and C++ as the tar-
get languages, and limit the maximum code tokens
length to 128. Consequently, we obtain a train-
ing dataset containing 2, 500 samples per language,
and 500 samples for both validation and testing.

Code Clone Detection Code cloning across lan-
guages, which reuses a fragment of source code
via copy-paste-modify, is a common way for code
reuse and software prototyping. We treat the so-
lutions belonging to different languages for the
same problem as positive samples and the other
random solution combinations in each batch as
negative samples. We control the number of
positive/negatives samples are balanced. We set
the threshold as 0.8, which means that the cross-
language input code pairs are semantic identical
if the cosine similarity between them is greater
than 0.8. For evaluation, we select LSTM (Sun-
dermeyer et al., 2012), Tree-LSTM (Shido et al.,
2019), TBCNN (Mou et al., 2016) and GraphCode-
BERT (Guo et al., 2020) models as baselines.

2https://atcoder.jp/
3https://codingcompetitions.withgoogle.com/codejam
4https://coderbyte.com/
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Table 1: The performance of CODEDISEN on code
reconstruction of Python w.r.t different data size and
training languages.

Method Size Languages in Training BLEU-1 CIDER ROUGE-L

VGVAE 1k Java/Python 29.033 36.372 49.953
CODEDISEN 1k Java/Python 29.750 40.102 50.079

1k Java/Python/C#/C++ 34.861 47.455 55.616
CODEDISEN 2.5k Java/Python 34.519 48.039 51.802

2.5k Java/Python/C#/C++ 44.765 116.90 59.159

Code-to-Code Search During software develop-
ment process, developers often look for code snip-
pets that offer similar functionality (Kim et al.,
2018). Our goal is to search the code snippet of
other programming languages with the same func-
tionality based on the current code snippet. To be
more challenging, there is only one code snippet
matching the query in the queried collection. We
compare the code snippet in the source language
with all code snippets in the target language to cal-
culate their cosine similarity. For evaluation, we
select BiLSTM (Linhares Pontes et al., 2018), Tree-
LSTM (Shido et al., 2019), TBCNN (Mou et al.,
2016) and GraphCodeBERT (Guo et al., 2020)
models as baselines, and we adopt Accuracy, MRR
and NDCG as evaluation metrics.

Code Translation In cross-language reconstruc-
tion, we know that xi and xj are source and target
code fragments, which are semantically identical
and belong to the same problem Pj . However, in
cross-language code translation, we do not know
xj and have to sample a random code snippet x

′
j

in language j to obtain syntactic features z
′
j . We

use this task to demonstrate that our model extracts
non-zero and identical syntactic features for the
same programming language. In addition, we use
Tree-LSTM and VGVAE as baselines, to demon-
strate the superior performance of our model on
cross-programming language tasks.

4.2 Disentangled or Not? (RQ1)
To check the equivalence of semantics, we conduct
experiment of reconstruction on Python code snip-
pets. For a given Python code snippet xi in the
test set, our CODEDISEN yields the aggregated se-
mantic vector yi from semantically identical code
snippets of other programming languages, i.e. Java
or Java/C#/C++, as well as the syntax vector zi
from the Python code snippet xi. Then yi and zi
are jointly used to reconstruct the Python code snip-
pet xi. We adopt the BLEU (Papineni et al., 2002),
CIDER (Vedantam et al., 2015) and ROUGE (Lin,

2004) to measure the quality of reconstructed text
xi from xi.

Table 1 shows the reconstruction performance of
our CODEDISEN under various multi-lingual set-
tings with different sizes of dataset. From this table,
we observe that our model which is trained using
AST information of 1,000 (1k) Java and 1,000 (1k)
Python programs significantly outperforms vanilla
VGVAE. It is also interesting to find that our model
achieves a significant performance improvement
when (1) we increase the training data from 1k to
2.5k samples for each language and (2) expand
the bi-lingual model to a multi-lingual architecture
(Java/Python/C#/C++). Furthermore, when com-
paring with VGVAE, CODEDISEN achieves 15.7%,
80.6% and 9.2% performance gains in terms of
BLEU-1, CIDER and ROUGE-L, respectively. It is
worth noting that CODEDISEN when trained using
1k samples still outperforms the bi-lingual model
trained using 2.5k samples. The total dataset sizes
used for training CODEDISEN are 1k×4 = 4k and
2.5k×2 = 5k. This indicates that the multi-lingual
architecture is good at dealing with more languages
in training, since variable names may share similar
semantics across different programming languages.

To further check the orthogonality of semantic
and syntax vectors, we conduct experiments using
the shared semantic vector and language-specific
syntax vectors on downstream tasks. As shown in
Table 2, CODEDISEN (Y) denotes only using the
output y of the shared semantic encoder Enc0 in
code-to-code search. The performance has a signif-
icant improvement compared to BiLSTM without
Enc0. CODEDISEN (Z) means only using the out-
put z of the syntax encoder, whose performance
even has a dramatic drop. This indicates that the
hidden vector y contains rich semantic information,
while the hidden vector z rarely contains semantic
information. As shown in Table 3, CODEDISEN

(R) means randomly sampling a code snippet x
′
j in

the training set to extract syntactic feature z
′
j for

reconstruction. We can observe that little degrada-
tion in model performance indicates that the syntax
vector of randomly sampled x

′
j is almost the same

as that of the original code snippet xj of the same
language j. When we set the variable z to zero
tensor, we find that the model performance drops
significantly. It confirms that the syntax vector z is
critical in the reconstruction process and z is almost
identical within the same programming language.
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Table 2: Effectiveness of shared semantic encoder of
our model in code-to-code search (2.5k/Java/Python).

Method ACC MRR NDCG

BiLSTM 0.166 0.275 0.413
Tree-LSTM 0.081 0.162 0.293
TBCNN 0.007 0.024 0.169
GraphCodeBERT 0.246 0.314 0.343
CODEDISEN (Y) 0.316 0.436 0.551
CODEDISEN (Z) 0.004 0.021 0.157

Table 3: Effectiveness of the syntax encoder of
CODEDISEN in code translation (1k/Java/Python).

Method BLEU-1 ROUGE-L CIDER

Tree-LSTM 25.84 37.53 36.96
VGVAE 29.03 49.95 36.37
VGVAE (R) 24.94 36.09 25.09
CODEDISEN 29.75 50.08 40.10
CODEDISEN (R) 29.51 48.64 38.92
CODEDISEN (0) 13.82 15.55 1.73

4.3 Downstream Task Performance (RQ2)

To better verify whether the disentangled multi-
lingual code semantic representation can boost the
performance of downstream tasks, we fine-tune the
model on the downstream tasks of code translation,
code-to-code search and code clone detection under
the cross-language setting.

As shown in Table 4, CODEDISEN (Y) that only
considers the semantics of code achieves the best
performance, significantly outperforming the per-
formance of counterpart CODEDISEN (Z) that only
considers the syntax of code. We set the thresh-
old value to 0.8 according to the testing perfor-
mance on code clone detection task. When we
set the threshold to 0.5, the performances of Tree-
LSTM and CODEDISEN are 0.576/0.954/0.718,
and 0.724/0.992/0.837, in terms of Precision, Re-
call and F1, respectively. This is because that if we
set the threshold to a lower value, more code snip-
pets may be classified as duplicates, thus the recall
increases while the precision decreases. Therefore,
we choose a threshold of 0.8 to better compare the
differences in performance between models.

It is noteworthy that the models such as Tree-
LSTM and TBCNN, which accept ASTs of a pro-
gram as their inputs can obtain high recall but low
precision. This indicates that if the ASTs are same,
to a large extent, the two programs can be con-
sidered as semantically identical, so the recall is
high. However, the ASTs of different programming
languages vary greatly and generate many tempo-
ral variables during compilation, thus introducing
noise nodes, so the precision can be low. Our ap-
proach combines the advantages of token and AST

Table 4: Effectiveness of semantic encoder of our
model in code clone detection (2.5k/Java/Python).

Method Precision Recall F1

LSTM 0.85 0.75 0.79
Tree-LSTM 0.78 0.84 0.81
TBCNN 0.50 0.99 0.66
GraphCodeBERT 0.56 0.54 0.50
CODEDISEN (Y) 0.88 0.93 0.90
CODEDISEN (Z) 0.50 0.33 0.38

features while obtaining high precision and recall
on cross-programming language tasks. GraphCode-
BERT, a pre-trained model on the code corpora of
multi-programming language, is suitable for fine-
tuning on specific task of a programming language.
For the task of code clone detection, we simply
fine-tune the model based on the released check-
point of GraphCodeBERT, under the setting of our
scenario. For the task of code-to-code search, we
extract the last layer of GraphCodeBERT output
and take the average value as the feature of the
code segment, and calculate the cosine similarity
to select the target from candidates, as described
in the Appendix A.3. As shown in Table 2 and
Table 4 , we can find that GraphCodeBERT does
not adapt well to cross-programming language se-
mantic matching related tasks.

Table 3 shows that although Tree-LSTM is
more suitable for encoding the structure informa-
tion of code than our LSTM-based model, our
CODEDISEN (R) still outperforms Tree-LSTM in
BLEU-1, ROUGE-L, CIDER by 3.7%, 11.1%,
2.0%, respectively. By introducing AST infor-
mation, our CODEDISEN (R) also has a signifi-
cant improvement when compared to VGVAE. Ta-
ble 2 shows that Tree-LSTM and TBCNN perform
poorly for cross-language code search tasks. The
main reason is that both Tree-LSTM and TBCNN
are based only on the input representation of an
AST. However, the ASTs of two semantically
equivalent programs written in two different lan-
guages (e.g., Java and Python) can be generated
quite differently by the compilers of these two lan-
guages, hence introducing syntax-level noise.

4.4 Generalizability of CODEDISEN (RQ3)
To investigate the generalizability of our semantic
module across languages, we evaluate our model
on unseen datasets in different languages. In addi-
tion, we compare the performance when combin-
ing different languages in the code-to-code search
task to demonstrate the superiority of multi-lingual
structures. From Table 5, we observe that when
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Table 5: Generalization ability of semantic encoder.

Languages (Testing) ACC MRR NDCG Languages(Training)

Java-Python 0.316 0.436 0.551 Java/Python
Java-C# 0.298 0.420 0.538 Java/Python
C++-C# 0.234 0.351 0.481 Java/Python
Java-Python 0.330 0.452 0.564 Java/Python/C#/C++
C++-Python 0.255 0.375 0.499 Java/Python
C++/Python 0.279 0.402 0.519 Java/Python/C#

Table 6: Ablation study of CODEDISEN, where IZ de-
notes independent syntax encoders Enc1∼n and KL de-
notes semantic KL term.

Method BLEU-1 ROUGE-L CIDER

CODEDISEN 44.77 59.16 116.9
-IZ 32.12 45.82 27.40
-KL 36.71 53.89 67.06

-Lpos 41.19 55.05 110.1
Lpos-att 41.93 56.90 102.6

we use the shared semantic encoder trained on
the Java/Python dataset, our model still achieves
good results on C++-C# and Java-C# code-to-code
search tasks after fine-tuning. Note that C++-C#
data are not there when training CODEDISEN , and
our model keeps most of its performance on Java-
Python dataset in Table 2. This is a good evidence
that the semantic representations extracted by our
model are generalizable across languages.

For Java-Python code search, the code se-
mantic encoder trained on four languages
(Java/Python/C#/C++) performs better than the one
trained on two language (Java/Python). For C++-
Python code search, we ensure the training dataset
free of C++ code snippets. We find that the code
semantic encoder trained on Java/Python/C# per-
forms better than the one trained on Java/Python.
These indicate that our multi-lingual architecture
can further utilise the samples of more program-
ming languages to train a better semantic encoder,
and is extensible to train more language-specific
syntax encoders.

4.5 Ablation Study

We conduct ablation analysis to understand the per-
formance contribution from different component
in our model. As shown in Table 6, we choose the
model trained on four languages as the baseline
(CODEDISEN). In fact, we find that the indepen-
dent Syntax encoders (IZ) and KL term (KL) have
a significant impact on the multi-lingual model.
When we remove these components, the BLEU-1
scores of our model drop by 12.65% and 8.06%.
This suggests that the design of implicit seman-

tic alignment and syntactic independence between
multiple programming languages is effective.

We also explore the role of attention in the code
position loss, while AST sequences are usually
much longer and more complicated than code to-
kens. The results show that when we use the code
position loss without Token2AST attention (Lpos-
att), performance of (Lpos-att) is close to that of
(-Lpos) removing code position loss. It means our
Token2AST attention mechanism could merge the
syntactic AST features and the semantic features
of tokens to handle the long sequence dependence.

4.6 Qualitative Analysis

We conduct case study to further investigate results
of the semantic extraction in code refactoring and
abstract syntax representation, as shown in Table 7.
From Case 1, it is clear to see that the variable
names in the generated snippets are consistent with
the semantic input Java snippets. Then we compare
the semantic information between the generated
and the input semantic code pairs. As shown in
Case 2, the syntax input does not have “Yes” or
“No” at all, but our generated snippet extracts this
from the semantic input very well. In addition, we
have rewritten the complex multivariate input form
of Java into the simple map input of Python, which
demonstrates that our model can extract semantics
well. On the other hand, we find that the gener-
ated snippets are compliant with Python syntax.
In conjunction with the random syntax sampling
discussed earlier, we can further show that the syn-
tax variables we extracted abstractly represent the
syntax of specific programming language.

5 Related Work

Deep Code Representation The existing code
representation works represent code snippets in
three ways, i.e., token-based representation, AST-
based representation, and graph-based representa-
tion. As for token-based representation (Hindle
et al., 2012; Bhoopchand et al., 2016), code snip-
pets are tokenized into token sequences and each
code token is represented as a real-valued vector.
As for AST-based representation, one line of work
is to directly represent the tree structure via Tree-
CNN (Mou et al., 2016) or Tree-LSTM (Chen et al.,
2018) . Another line of work is to indirectly rep-
resent the AST by linearizing the AST into a se-
quence of nodes (Hu et al., 2018; Alon et al., 2019;
Liu et al., 2020) via traversing. Wan et al. (Wan
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Table 7: Example of generated results by code translation (Java/Python).

Case 1

Semantic Scanner sc = new Scanner(System.in); int a = sc.nextInt(); int b = sc.nextInt(); if( a < b ) System.out.println ( b );
else System.out.println ( a );

Syntax h1 = int (input ()) h2 = int (input ()) print ( h1 - h2 )
Reference a , b = map ( int ,input ().split ()) print ( max( a , b ))
Generated a , b = map ( int ,input ().split ()) print ( a + b )

Case 2

Semantic Scanner sc = new Scanner (System.in); int A = sc.nextInt(); int B = sc.nextInt(); int C = sc.nextInt(); if( C <= A + B )
System.out.println (“ Yes ”); else System.out.println (“ No ”);

Syntax n = int (input ()) if n == 12 : print ( 1 ) else : print (n + 1)
Reference A , B , C = map (int ,input ().split ()) if A + B < C : print (“ No ”) else : print (“ Yes ”)
Generated A , B = map (int ,input ().split ()) if A == B : print (“ YES ”) else : print (“ NO ”)

et al., 2018; Wang et al., 2020b; Wan et al., 2019;
Hua et al., 2021) propose to integrate the semantics
of code from different views (e.g., the tokens, AST
and control-flow graph) into a hybrid feature space,
and put forward a hybrid representation approach,
for the task of code summarization, code search
and code clone detection. As for graph-based rep-
resentations several works resort to parse the pro-
gram into a graph (e.g., augmented AST, control-
flow graph, and data-flow graph) (Li et al., 2015;
LeClair et al., 2020; Wan et al., 2019; Sui et al.,
2020; Guo et al., 2020). Benefiting from the strong
power of pre-training technique in natural language
processing, recently, several works (Kanade et al.,
2020; Feng et al., 2020; Guo et al., 2020) propose
to pre-train a masked language model on the large-
scale of code corpora, like BERT (Devlin et al.,
2019). CodeBERT (Feng et al., 2020) pre-trains
a language model on the source codes and natural
language descriptions, and significantly boosts per-
formance on code search. GraphCodeBERT (Guo
et al., 2020) advances the CodeBERT by incorpo-
rating the data-flow information among variables
into pre-training.

Multilingual Knowledge Transfer For multi-
lingual tasks, if we treat word embedding spaces
isomorphic between different languages, which has
been shown not to hold in practice (Søgaard et al.,
2018), and fundamentally limits their performance.
Sabet et al. (2019) train a bilingual model on bilin-
gual corpora by introducing a cross-lingual loss
in addition to the monolingual loss. The model
learns to translate on each other by inputting par-
allel data sets at one step simultaneously. This en-
sures that the word and n-gram embeddings of both
languages lie in the same space. Our approach is
primarily referenced to text-controlled generation,
which transfers the knowledge by dissociating tan-

gled representations. Cross-training disentangling
methods (Chen et al., 2019a,b; Wang et al., 2020a)
on the controlled text generation task, which are
implemented in a VGVAE framework and guided
by paraphrase reconstruction loss have inspired us
a lot. In particular, the syntax input of the code can
be conveyed via AST. Code syntax regularity can
be well exploited in multilingual architectures to
achieve semantic alignment in dissociated latent
spaces to improve the quality of representations
with desirable generalizability.

6 Conclusion

In this paper, we propose a novel disentangled
code representation learning approach under multi-
lingual setting. We introduce three dedicated losses
to enforce the disentanglement of code semantics
and syntax. Comprehensive experiments on the
three downstream tasks validate the effectiveness
of our disentangled semantic and syntax represen-
tation. In the future, we will devise more effective
disentanglement models for code representation
learning. Another line is to extend the proposed
approach to cross-lingual customer service robots,
where answers of different languages for the same
question share the same semantic information.
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A Appendices

A.1 Training Details
All the experiments are conducted on 2 Geforce
GTX 1080Ti GPUs. It tasks about 4 hours to train
CODEDISEN . For encoder and decoder networks
of CODEDISEN, we use the same BiLSTM model
structure. The embedding size is 100 and the hid-
den size is 100. The dimensionality of Semantic
latent variable vector is 50. The dimensionality
of Syntax latent variable vector is 50. Specially,
the hidden size in feed-forward network and atten-
tion mechanism is also 100. The coefficient α of
the cross-language reconstruction loss Lrec is 1.0.
When calculating the KL divergence term, the co-
efficient β of the Posterior distribution loss Ldist is
0.1, the coefficient of the vMF (·) KL divergence
is 1e-4 and the coefficient of the Gaussian(·) KL
divergence is 1e-3. The coefficient γ of the atten-
tive code position loss Lpos is 1.0. We train each
model for 60 epochs and the batch size is 10 for
each programming language.

A.2 Case Study
As shown in Table 8, the semantic inputs and ref-
erence code snippets are semantically identical yet
grammatically different. Based on the semantic
information extracted from a Java code snippet and
the syntax information extracted from a random se-
lected Python code snippet, our approach can gener-
ate a Python snippet similar to the reference Python
snippet which is semantically similar to Java input.
We find that the semantics of the snippet we gen-
erated and the reference snippet are very similar,
especially the content of printed string, such as
“YES” or “NO”, “Even” or “Odd”, even the rare
words (“Christmas Eve...”). At the same
time, the generated code snippets are completely
unaffected by randomly sampled syntax input. This
means that our semantic and syntactic disentangle-
ment modules perform well in extracting shared
semantic information from code snippets for the
same programming exercise and general syntactic
features belonging to specific programming lan-
guage.

Note that our generative model will be defi-
cient in reconstructing mathematical expressions.
For example, the reference snippet is “a%2==0”
or “b%2==0” and the generated is “a%b”. The
main reason is that the specific content of mathe-
matical expressions is less weighty in the seman-
tic expression of a code snippet, and our model

Figure 5: The framework of code clone detection. The
left shows training on the semantic module and the
right shows training on the specific syntax modules.

tends to focus more on generating an expression
rather than on the content of expressions. An-
other drawback is that our model can not generate
long code snippets well, e.g., ’’) is missing after
the “print(‘‘Christmas Eve ... Eve”
in the third example. In the future, we will replace
the original mathematical expressions with word
descriptions of longer token length to increase the
weight in reconstruction loss function. In addition,
we will use tree-structured decoders to guarantee
the executability of the generated code so as to
increase long dependencies.

A.3 Architecture of Downstream Tasks
In this section, we detail the model architecture of
cross-language code clone detection and code-to-
code search tasks. The model for the code transla-
tion is identical to the cross-language reconstruc-
tion model used for the disentanglement training,
except that the code snippets from which the syn-
tactic latent variables are extracted are randomly
sampled.

The key component of the proposed downstream
tasks flow is the Bi-NN. It is modeled as two un-
derlying subnetworks followed by a classification
layer. In our work, the underlying subnetworks are
semantic and syntax modules and other baseline
networks such as BiLSTM. The classifier we de-
fined as a 2-layer shared feed-forward network and
calculate the cosine similarity of the input cross-
language samples.

A.3.1 Code Clone Detection
Code cloning across languages, which reuses a
fragment of source code via copy-paste-modify, is
a common way for code reuse and software pro-
totyping. We train and test the code clone detec-
tion task on Java/Python, Python/C++, C++/C#
and C#/Java language pairs. In particular, we cal-
culate the metric scores on average, as shown in
Figure 5. We treat the solutions belong to different
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Table 8: More examples of reconstructed results by random syntax (Java/Python).

Code Snippets

Semantic import java . util .*; public class Main public static void main ( String [] args ) Scanner sc = new Scanner ( System . in ); String [] line = sc . next Line
(). split (“ ”); int r = Integer . parse Int ( line [ 0 ]) * 100 ; int g = Integer . parse Int ( line [ 1 ]) * 10 ; int b = Integer . parse Int ( line [ 2 ]); int result = r +
g + b ; if ( result % 4 == 0 ) System . out . println (“ YES ”); return ; System . out . println (“ NO ”);

Syntax s = input () num = “ ” for i in range ( len ( s )): if s [ i ] in “ 0123456789 ”: num += s [ i ] print ( num )
Reference x , y , z = input (). split () a = int ( x + y + z ) if a % 4 == 0 : print (‘ YES ’) else : print (‘ NO ’)
Generated a , b , c = map ( int , input (). split ()) if a % b == 0 : print (“ Yes ”) else : print (“ No ”)

Semantic import java . util .*; public class Main public static void main ( String [] args ) Scanner sc = new Scanner ( System . in ); int a = sc . next Int (); int b =
sc . next Int (); if ( a % 2 == 0 || b % 2 == 0 ) System . out . print (“ Even ”); else System . out . print (“ Odd ”); sc . close ();

Syntax N = int ( input ()) ans = 0 for i in range ( N ): l , r = map ( int , input (). split ()) ans += r - l print ( ans + N )
Reference a , b = map ( int , input (). split ()) if a % 2 == 0 or b % 2 == 0 : print (‘ Even ’) else : print (‘ Odd ’)
Generated a , b = map ( int , input (). split ()) if a % b == 0 : print (“ Even ”) else : print (“ Odd ”)

Semantic import java . io .*; import java . util .*; public class Main public static void main ( String [] args ) try Scanner sc = new Scanner ( System . in ); int d ; d
= Integer . parse Int ( sc . next ()); System . out . print (“ Christmas ”); for ( int i = 0 ; i < 25 - d ; i ++) System . out . print (“ Eve ”); System . out .
println (“”); catch ( Exception e ) System . out . println (“ out ”);

Syntax n = int ( input ()) k = int ( input ()) if n > 2 * k : ans = “ YES ” else : ans = “ NO ” print ( ans )
Reference D = int ( input ()) if D == 25 : print (“ Christmas ”) else : if D == 24 : print (“ Christmas Eve ”) else : if D == 23 : print (“ Christmas Eve Eve ”) else :

print (“ Christmas Eve Eve Eve ”)
Generated A , B = map ( int , input (). split ()) if A == B : print (“ Christmas Eve Eve Eve Eve ”) elif D == 23 : print (“ Christmas Eve Eve Eve Eve Eve Eve Eve

Figure 6: The framework of code-to-code search.
Given a query code snippet written in Python as well
as a series of candidate code snippets written in Java,
the goal of code-to-code search is to retrieve the most
relevant Java snippets based on cosine similarity.

languages for the same problem as positive sam-
ples and the other random solution combinations
in each batch as negative samples. To be more
challenging, we extracted 350 programming prob-
lems from CLCDSA dataset such that each prob-
lem has only one solution per language for evalua-
tion. We control the number of positive/negatives
samples are balanced. We set the threshold as
0.8(@80). It means that if the cosine similarity
of cross-language input code pairs is greater than
80%, we consider them as semantic clone pairs.
In addition, we use the semantic module and the
syntax modules compared to baselines in Table 4
to validate that extracted semantics features could
improve the performance and our syntax modules
may perform poorly because of missing semantic
information.

A.3.2 Code-to-Code Search

The training language pair combinations and
dataset construction are the same as the code clone
detection task. We control that each programming

language has only one unique solution for each pro-
gramming problem. When evaluating our model,
we compare the code snippet in source query lan-
guage to the all code snippets in target language,
calculating their cosine similarity. Then we predict
the type of algorithm by greedy choosing the high-
est score sample as shown in Figure 6. In contrast
to the usual algorithm classification of one-hot tags,
we chose to compare the similarity with all sam-
ples of the target domain to do code-to-code search.
This makes the more difficult and convincing task
to validate the quality of the semantic representa-
tion of the code.


