
Live Path CFI Against Control Flow
Hijacking Attacks

Mohamad Barbar1(B), Yulei Sui1, Hongyu Zhang2, Shiping Chen3,
and Jingling Xue4

1 University of Technology Sydney, Sydney, Australia
mbarbar@runbox.com

2 University of Newcastle, Callaghan, Australia
3 CSIRO/Data61, Sydney, Australia

4 University of New South Wales, Sydney, Australia

Abstract. Through memory vulnerabilities, control flow hijacking
allows an attacker to force a running program to execute other than what
the programmer has intended. Control Flow Integrity (CFI) aims to pre-
vent the adversarial effects of these attacks. CFI attempts to enforce the
programmer’s intent by ensuring that a program only runs according to a
control flow graph (CFG) of the program. The enforced CFG can be built
statically or dynamically, and Per-Input Control Flow Integrity (PICFI)
represents a recent advance in dynamic CFI techniques. PICFI begins
execution with the empty CFG of a program and lazily adds edges to the
CFG during execution according to concrete inputs. However, this CFG
grows monotonically, i.e., edges are never removed when corresponding
control flow transfers become illegal. This paper presents LPCFI, Live
Path Control Flow Integrity, to more precisely enforce forward edge CFI
using a dynamically computed CFG by both adding and removing edges
for all indirect control flow transfers from indirect callsites, thereby rais-
ing the bar against control flow hijacking attacks.

Keyword: Control Flow Integrity

1 Introduction

Programs written in low-level languages, such as C and C++, make up the
majority of performance-critical system software (e.g., web browsers and lan-
guage runtimes) running on most computing platforms. In some domains, like
embedded systems, these languages are almost ubiquitous. However, these unsafe
languages are prone to memory corruption vulnerabilities (e.g., use-after-free and
buffer overflows). An attacker may leverage these vulnerabilities to launch control
flow hijacking attacks by changing the target of an indirect branch instruction
to force a running program to execute at a location of the attacker’s choice. In
realistic scenarios, attackers may be able to perform Turing complete computa-
tion by abusing memory vulnerabilities and using techniques like return oriented
programming [1] and counterfeit object-oriented programming [2].
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 768–779, 2018.
https://doi.org/10.1007/978-3-319-93638-3_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93638-3_45&domain=pdf

Live Path CFI Against Control Flow Hijacking Attacks 769

1: void (*fp)(void);
2: void foo(int n) {
3: if (n) {
4: lpcfi assign const(fp, &g);
5: fp = &g;
6: } else {
7: lpcfi assign const(fp, &h);
8: fp = &h
9: }

10://unsafe: modify the value of fp
11: lpcfi check(fp);
12: fp();
13: }
14: void main(void) {
15: foo(1)
16: foo(0)
17: }

(a) Otherwise unsafe
code protected by LPCFI.

main foo(1)

foo(0)

foo fp()

g h

e1 e2

e3 e4

main foo ge1 e3

main foo he2 e4

main foo ge2 e3

Direct call
Indirect call

(b) PICFI’s CFG and feasible
paths (green) and infeasible path
(red) not protected by PICFI.

Fig. 1. A motivating example to demonstrate the limitation of PICFI. (Colour figure
online.)

Control Flow Integrity (CFI) has been proposed to prevent control flow
hijacking [3]. CFI typically works by enforcing a control flow graph (CFG), which
represents the programmer’s intent - or rather, what can be inferred as legal and
illegal control flow from the program. Edges in the CFG represent control flow
transfers, and CFI aims to protect indirect control flow edges from being taken
illegally. The protection offered by CFI is more effective if a more precise CFG
is used. The CFG can be computed statically and this does not consider the fact
that the legal status of indirect control flow transfers constantly changes during
runtime. For example, when a function pointer is reassigned to a new value, an
indirect call via that function pointer will call a new function target and calling
the previous target would be illegal.

Insights. Per-Input Control Flow Integrity (PICFI) [4] represents a recent
dynamic approach to forward edge CFI. PICFI first pre-computes a static CFG
as the upper bound for its dynamic one. PICFI starts with the empty CFG
of a program, and during runtime, once a function address is taken (e.g., p =
&func), it will add an edge from each indirect callsite to func if this edge is also
found in the static CFG. Hence PICFI provides better security guarantees than
CFI techniques which enforce a statically computed CFG. However, PICFI’s
dynamic CFG grows monotonically, i.e, edges added to the CFG are never
removed. Hence, edges become permanently legal to take regardless of whether
their legality changes over time. The conservatively constructed dynamic CFG
used by PICFI leaves an attack surface: when an indirect transfer remains on
the monotonically growing CFG but can never be legally executed again.

Motivating Example. Figure 1 illustrates this limitation of PICFI via a proof-
of-concept attack. Note that the lines marked in blue are instrumentation calls

770 M. Barbar et al.

from our LPCFI approach to protect against this attack, and will be explained
below. PICFI begins execution with an empty CFG. Initially the indirect callsite
fp() at line 12 cannot invoke any function legally. After executing the if branch
via foo(1) at line 15, g becomes a legitimate target (e3 is added to the CFG).
After executing the else branch via foo(0) at line 16, h becomes a legitimate
target (e4 is added to the CFG).

Figure 1b gives PICFI’s CFG constructed immediately before the indirect
callsite fp() at line 12 when foo is invoked for a second time via foo(0) at line
16. Unfortunately, the indirect call edge fp()

e3−→g, which was added during the
first execution of foo, has already become illegal to take since fp only points to
h during the second execution at the time of calling fp(). However, this spurious
edge fp() e3−→g remains on PICFI’s CFG. This conservative CFG allows attackers
to redirect fp() to g by modifying fp’s value to be g via a memory corruption
error [5], despite foo not being allowed to call g when n’s value is 0. Therefore,
PICFI still provides an attacker opportunities to launch control flow hijacking
attacks by treating “out-of-date” control flow edges as legitimate. This paper
presents LPCFI, Live Path Control Flow Integrity, which aims to overcome this
limitation of PICFI by both adding and removing CFG edges, allowing at most
one outgoing forward edge from every indirect callsite at any one program point.

Let us revisit the example in Fig. 1 whilst taking into consideration LPCFI’s
instrumentation (highlighted in blue). During the first call to foo, fp() e3−→ g
is added to the CFG via lpcfi assign const. A check is then performed to
ensure that the indirect call transfer from fp() will reach the only legitimate
target g. During the second call to foo, lpcfi assign const in the else branch
updates the CFG by first removing invalid edge fp()

e3−→ g from the CFG, and
then adding fp()

e4−→ h. This removal is important since the second call to foo
via foo(0) is not allowed to call g, which PICFI ignores. LPCFI ensures only
one legitimate (live) function target is allowed at any call path to an indirect
callsite.

Challenges. Designing a CFI technique that overcomes the aforementioned lim-
itation is challenging. Firstly, precise static analysis is required to find statements
which may require instrumentation as the precision of static analysis directly cor-
relates with the overhead reduction achieved. Only the statements which may
modify or read the value of a function pointer should be identified by static
pointer analysis for instrumentation. Secondly, function pointer values need to
be correctly maintained in safe memory and the metadata data structure needs
to be well designed to ensure efficient lookup and runtime checks.

Our Solution. LPCFI aims to ensure only edges which are currently “live”
- can be legally taken - exist within the CFG. We have designed and imple-
mented a new instrumentation approach which tracks function pointers and the
address-taken function which they point to at any program point. A function
pointer may only ever point to a single function object, so our instrumentation
correctly updates which pointers point to which function objects in an efficient
data structure in safe memory. We apply pointer analysis [6] to identify all state-

Live Path CFI Against Control Flow Hijacking Attacks 771

ments which may potentially access the value of a function pointer, and instru-
ment only those statements to minimise runtime overhead. Any callsite from a
function pointer is checked to ensure the runtime value matches the value stored
in safe memory.

This paper makes the following key contributions:

– We present LPCFI, a new dynamic control flow integrity technique that can
protect against attacks undetected by the conservative monotonically growing
CFG used by PICFI.

– We propose a new instrumentation approach coupled with a data structure
to allow only one function to be a legal target for any indirect callsite.

– We have developed a proof-of-concept attack and defence to demonstrate the
effectiveness of LPCFI in mitigating control flow attacks which are not pro-
tected by PICFI. This is publicly available at https://github.com/mbarbar/
lpcfi.

2 Related Works

Often, CFI implementations determine policy (i.e. valid targets for an indirect
control flow transfer at a particular time) according to only static information.
This is limited in that some properties are impossible to determine statically, for
example, the value of a function pointer reliant on user input.

Per-Input Control Flow Integrity (PICFI) is a CFI implementation which
uses dynamic information to gradually build the CFG [4]. PICFI begins execu-
tion with an empty CFG; all indirect transfers of control are illegal. The CFG is
gradually constructed by discovering valid targets for indirect control flow trans-
fers during runtime according to program inputs. For example, when a function
is called, that callsite becomes a valid target of return instructions, or when a
function pointer is assigned a value, that value becomes a valid target for indi-
rect callsites (constrained by the static CFG). However, these additions to the
CFG are permanent; the CFG grows monotonically. This means that changes in
target legality are not reflected in the CFG, and hence not enforced by PICFI. A
target which is made legal by PICFI is regarded as legal for the rest of execution.

Offering improvements over PICFI, PittyPat [7], a very recent work, uses
dynamic path-sensitive points-to analysis to further restrict the set of allowed
function pointers at indirect callsites during runtime. Rather than considering
just address activation, or the static points-to sets at a particular program point,
PittyPat considers the points-to set of a function pointer at a particular program
point only based on the executed program path. Hence PittyPat avoids PICFI’s
limitation of keeping previously legal targets which have become illegal. However,
PittyPat has a strong dependency on specific hardware and a modified kernel.
In contrast, LPCFI is a portable purely software-based approach without any
hardware dependency.

A shadow stack is a second stack existing in memory used to ensure return
instructions jump to the correct address [8,9]. Shadow stacks work by mirroring
return addresses pushed onto the execution stack. Upon returning, the value

https://github.com/mbarbar/lpcfi
https://github.com/mbarbar/lpcfi

772 M. Barbar et al.

on top of the shadow stack is compared with that on the execution stack, and
if the comparison fails, an error is detected. If the shadow stack is safe from
manipulation, shadow stacks perfectly protect return transfers. However, shadow
stacks only protect backward edges but not forward edges like virtual calls.

CFI techniques have recently been used to protect against virtual table
hijacking attacks in low-level object-oriented languages like C++. VTV [10],
VTrust [11], and SafeDispatch [12] apply Class Hierarchy Analysis (CHA) to
analyse virtual calls to enforce CFI. ShrinkWrap [13] aims to improve CHA based
CFI by considering multiple and diamond inheritance. VIP [14] is a recent CFI
technique that enforces a more precise call graph than CHA based approaches
by using pointer analysis and a fast index-based instrumentation.

This work builds on an earlier version of our work [15].

3 LPCFI Approach

This section details our Live Path Control Flow Integrity approach designed
to reduce the attack surface left by PICFI. Section 3.1 describes the program
representation of a C/C++ program. Section 3.2 introduces the fp-table, the
internal metadata design. Finally, Sect. 3.3 describes the instrumentation which
operates on the fp-table to precisely update the dynamic CFG at runtime.

Fig. 2. Internal representation of the fp-table.

3.1 Program Representation

We represent programs in LLVM’s SSA form following [6,16]. The set of all vari-
ables is separated into two subsets: top-level pointers (registers) whose addresses
are not taken, and all potential targets, i.e., all address-taken objects of a pointer.
In SSA, a program is represented by five statement types: const (p = &o), copy
(p = q), store (*p = q), load (p = *q), and call (fp(...)). Passing argu-
ments into and returning results from functions are modeled by copies. A global
variable initialisation is translated into one of the four types of assignments and
analysed immediately at the beginning of the main function. For a const state-
ment p = &o (allocation sites), o is a stack or global variable, or a dynamically
created abstract heap object. We only analyse statements which access (modify
or read) the value of a function pointer according to static pointer analysis [6].

Live Path CFI Against Control Flow Hijacking Attacks 773

3.2 Data Structures

LPCFI needs to store metadata in the fp-table (Fig. 2) to perform bookkeeping
to update the dynamic CFG. The metadata is stored in a safe memory region
which is accessed frequently for both reading and writing following [11].

LPCFI maintains the fp-table as shown in Fig. 2, which is a fixed size
array (size is the number of address-taken functions in the program) where
each element holds: (1) the address of a function func address, (2) an acti-
vation bit actv, and (3) a set fpset of function pointers which legally point to
func address at a particular program point during runtime. pt(fp table, fp)
returns the function that pointer fp points to. Overloaded lookup(fp table,
&func) returns the index of &func in the fp table, and lookup(fp table,
&fp) returns the index of the function which &fp points to in the fp table.

The fp-table is a simple yet efficient solution for fast lookup using a one
dimensional array. The fp-table uses function addresses as keys for various rea-
sons. Firstly, it can be a fixed size since functions which may have their addresses
taken (const statements) at runtime are known statically. Secondly, the check-
ing operation can perform lookups on the function that is about to be called
(the runtime value) and retrieve its fpset. Finally, a data structure with func-
tion addresses as the key is required regardless to keep track of whether func-
tions have been address-taken (activated) to guarantee a lower security bound
of PICFI.

3.3 Instrumentation

LPCFI’s instrumentation is placed immediately before the five statement types.
We insert instrumentation for an assignment only if it may read/write a function
pointer value as determined by Andersen’s pointer analysis [6]. All instrumenta-
tions except the checking instrumentation write to the fp-table.

1: update(fp, &o) {
2: // Check function object
3: if(o not a function obj) return;
4: // Search for index of object which fp points to
5: oldInd = lookup(fp table, &pt(fp table,fp));
6: // Remove fp from set of fp table[oldInd]
7: if (oldInd!=-1) remove(fp table[oldInd].fpset, fp);
8: // Search the index of function o in fp table
9: newInd = lookup(fp table, &o);

10: if (newInd==-1) error(’not found’);
11: // Add fp to the new function pointer set
12: add(fp table[newInd].fpset, fp);
13: }

Fig. 3. Helper function update to remove and add pointers in the fp-table.

The four assignment instrumentations share helper function update(fp, &o)
in Fig. 3 which updates a function pointer fp to correctly point to function o by

774 M. Barbar et al.

removing fp from the fpset of fp’s old points-to target (if it is a member) at line
7, and adding fp to o’s fpset at line 12. Note that pointer analysis is always an
over-approximation. A pointer q resolved to point to a function statically, may
not point to such at runtime. LPCFI will not perform any runtime update if the
right hand side expression of an assignment (e.g., ... = q) does not refer to a
function object as shown at line 3 in Fig. 3.

Handling Constant Assignments fp = &func: This case, as carried out by
lpcfi assign const shown in Fig. 4, is simple as it is a direct assignment of a
function address func to a function pointer fp. Upon executing this statement,
LPCFI requires that, (1) func be regarded as activated, and (2) fp exclusively
points to func in the fp-table.

Assignments of this form may execute multiple times for the same RHS value.
Hence, functions will be activated multiple times. This does not affect correctness
and runtime overhead for the activation operation is negligible.

1: lpcfi assign const(fp, &func) {
2: // Search the index of &func in fp table
3: ind = lookup(fp table, &func);
4: if(ind==-1) error(’not found’);
5: // Mark func as activated
6: fp table[ind].actv bit = 1;
7: // Update fp to point to func
8: update(fp, &func);
9: }

fp = &func;

Fig. 4. Handling const statements using lpcfi assign const.

Handling Copy Assignments p = q: Represented by lpcfi assign copy,
the second case is also straightforward as shown in Fig. 5. First, we obtain
pt(fp table,q), the points-to target o of the RHS pointer q derived from the
fp-table. Then, p is made to exclusively point to q’s pointee o if o is a function
object, so both p and q are put into the fpset of object o.

1: lpcfi assign copy(p, q) {
2: // Get the object that q points to in fp table
3: o = pt(fp table, q);
4: // Update p to point to o only if o is a function
5: update(p, &o);
6: }

p = q;

Fig. 5. Handling copy statements using lpcfi assign copy.

Handling Load Assignments p = *s: lpcfi assign load’s implementation
is shown in Fig. 6. Similar to handling the copy case, we first retrieve points-to

Live Path CFI Against Control Flow Hijacking Attacks 775

target o of *s from the fp-table. o is checked to ensure that it has been activated
(lines 5–8) (for a lower bound protection of PICFI, further discussed in Sect. 4.3).
Then, p is made to exclusively point to the object o (line 10).

1: lpcfi assign load(p, *s) {
2: // Get the object that *s points to
3: o = pt(fp table,*s);
4: // Search for the index of &o in fp table
5: ind = lookup(fp table, &o);
6: if(ind==-1) error(’not found’);
7: // Ensure o has been activated
8: assert(fp table[ind].actv);
9: // Update p to point to o

10: update(p, &o);
11: }

p = *s;

Fig. 6. Handling load statements using lpcfi assign load.

Handling Store Assignments *r = q: lpcfi assign store’s implementa-
tion is shown in Fig. 7. This case is similar to the copy case. The points-to
target o of the RHS pointer q is retrieved via pt(fp table, q). Then, runtime
value *r is made to exclusively point to the same as that which q does in the
fp-table.

1: lpcfi assign store(*r, q) {
2: // Get the object that *r points to
3: o = pt(fp table,q);
4: // Update q to point to o
5: update(*r, &o);
6: }

*r = q;

Fig. 7. Handling store statements using lpcfi assign store.

Handling Calls fp(...): As shown in Fig. 8, whenever a call is made from a
function pointer, the runtime value of the function pointer needs to be checked
against its saved value in the fp-table. Furthermore, a check confirming that
a callsite-to-target edge is within the static CFG must also be performed to
guarantee a security lower bound of PICFI. If either check fails, LPCFI will
report an error indicating an attempted illegal control flow transfer.

4 Implementation

We have developed a prototype with a step-by-step live demo to illustrate exam-
ples (those in Figs. 1 and 9) that can be protected by LPCFI but not by PICFI.
They are publicly available at https://github.com/mbarbar/lpcfi.

https://github.com/mbarbar/lpcfi

776 M. Barbar et al.

1: lpcfi check(fp, callsite) {
2: // Get the object that fp points to
3: o = pt(fp table,fp);
4: // Enforce control flow integrity
5: assert(runtimeVal(*fp) == &o

&& edge(callsite, &o) ∈ static CFG);
6: }

fp(...);

Fig. 8. Handling call statements using lpcfi check.

4.1 Instrumentation and Data Structure

In our open-source prototype, LPCFI’s data structure (Fig. 2) and its instru-
mentation are implemented in an equivalent yet less efficient manner as a stan-
dalone library (i.e., lpcfi.h, lpcfi.c, fptable.h and fptable.c). In order to
demonstrate the key idea and techniques easily, our prototype performs manual
instrumention for the motivating example (Fig. 1) as available in demo.c.

At indirect callsites, a lookup operation through lpcfi check is performed
as discussed in Sect. 4.2. Assignment instrumentations are not idempotent so
PICFI’s optimsation strategy of patching out instrumentation can not be
achieved. lpcfi assign const performs both function activation (which is idem-
potent) and fp-table modification. Function activation results in a bit being set
and is negligible to the total runtime overhead.

Andersen’s pointer analysis [6] is used to check whether pointer dereferences
can read or write a function pointer value. This is conservative, so any statement
determined to not access such a value is safe without runtime bookkeeping.

4.2 Lookup Operation on the fp-table

The lookup operation is important to LPCFI’s metadata manipulation. This
happens often, especially since checking function pointer callsites requires this
search. During initialisation, the fp-table is sorted according to the func address
field for efficient searching. Then, a binary search can be performed on the fp-
table with the func address field as the key, an O(log n) operation.

Overhead mainly comes from the update helper function due to the search
operation on the fp-table for assignment instrumentations. Optimisations can
be implemented to improve the performance of the search, e.g., caching common
searches with a hash map.

4.3 Security Guarantee

LPCFI guarantees security at a lower bound of PICFI but reduces the attack sur-
face by removing spurious CFG edges during runtime. Following PICFI, LPCFI
only allows an indirect call to target a function whose address has been taken
(activated) if such callsite-target edge exists in the static CFG. However, LPCFI
places a further restriction: that function pointers hold their last assigned value.

Live Path CFI Against Control Flow Hijacking Attacks 777

Calling a function pointer after it has been modified outside the standard
assignment statements results in a raised assertion because assignment instru-
mentations are the only way to write to the fp-table, which the check opera-
tion relies on. Like PICFI, LPCFI enforces control flow integrity, not data flow
integrity [17,18]. LPCFI does not ensure memory safety for code and data point-
ers (e.g., the pointers dereferenced in load/store statements are unprotected).

1: #include "privileges.h"
2: /* The header file contains function pointers */
3: /* ‘volatile (void)(*priv)(void)’ and ‘volatile (void)(*nopriv)(void)’ */
4: /* for accessing privileged and non-privileged system methods. */
5: int main(void) {
6: (void)(*op)(void);
7: char password[7];
8: while (true) {
9: fgets(password, 7, stdin);

10: if (strcmp(password, "secret") == 0) {
11: lpcfi assign copy(op, priv);
12: op = priv;
13: } else {
14: lpcfi assign copy(op, nopriv);
15: op = nopriv;
16: }
17: // memory corruption vulnerability: modify the value of op
18: lpcfi check(op);
19: op();
20: }
21: }

Fig. 9. Password verification cope that is safe with LPCFI, but not with PICFI. (Colour
figure online.)

5 Proof-of-Concept Attack and Defence

Figure 9 demonstrates LPCFI’s effectiveness over PICFI with a proof-of-concept
example in the presence of loops. This is a permission access scenario that
allows a user to access a privileged or non-privileged call depending upon the
password entered. This demo (including extended-demo.c, privileges.c, and
privileges.h) is publicly available in the extended-demo folder in our release.

LPCFI’s instrumentation is shown in blue (discussed below). In an infinite
loop, a user is prompted for a password. If correct, function pointer op is set to
function pointer priv, a privileged operation. If not, op is set to function pointer
nopriv, a non-privileged operation. Finally, op is called and the loop begins
anew. A memory vulnerability before the call allows an attackers to modify op.

If not instrumented, an attacker may change the value of op to any value,
and the call will target that location. If the code was instrumented by PICFI,
initially, the op call is deemed unable to target any location legally. The first

778 M. Barbar et al.

time the password is entered incorrectly, the op call may reach the value pointed
to by nopriv. Similarly, the first time the password is entered correctly, the op
call may reach the value pointed to by priv. When both possible values have
been activated, PICFI will see the op call as being able to legally take on either
value until program exit. If a user enters the password incorrectly, they may
modify the value of op to be that of the privileged function pointer, and PICFI
will allow this call to be made. This is a problem when a malicious user uses the
system after a privileged user.

When the code is instrumented with LPCFI (as shown in blue), this problem
is remedied. When op is set to priv at line 12, the op call will only succeed if
op retains the value it was assigned (priv). Similarly, when op is set to nopriv
at line 15, for the op call to succeed, op must retain its value (nopriv). The
fp-table is storing a single value - the most recently assigned value.

6 Conclusion

This paper presents LPCFI, a new dynamic control flow integrity technique that
can protect against attacks undetected when using the monotonically growing
CFG used by PICFI. LPCFI achieves a lower bound security guarantee of that
promised by PICFI but reduces the attack surface left by PICFI using a new
instrumentation approach and, with a specially designed data structure, ensures
that indirect callsites from function pointers can only target at most one function.

References

1. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: CCS 2007, pp. 552–561 (2007)

2. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.-R., Holz, T.: Coun-
terfeit object-oriented programming: on the difficulty of preventing code reuse
attacks in C++ applications. In: S&P 2015, pp. 745–762 (2015)

3. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 4:1–4:40
(2009)

4. Niu, B., Tan, G.: Per-input control-flow integrity. In: CCS 2015 (2015)
5. Evans, I., Long, F., Otgonbaatar, U., Shrobe, H., Rinard, M., Okhravi, H.,

Sidiroglou-Douskos, S.: Control jujutsu: on the weaknesses of fine-grained control
flow integrity. In: CCS 2015, pp. 901–913 (2015)

6. Sui, Y., Xue, J.: SVF: interprocedural static value-flow analysis in LLVM. In: CC
2016, pp. 265–266 (2016)

7. Ding, R., Qian, C., Song, C., Harris, B., Kim, T., Lee, W.: Efficient protection of
path-sensitive control security. In: USENIX Security 2017, pp. 131–148 (2017)

8. Sinnadurai, S., Zhao, Q., Wong, W.-F.: Transparent runtime shadow stack: pro-
tection against malicious return address modifications (2008)

9. Erlingsson, Ú., Abadi, M., Vrable, M., Budiu, M., Necula, G.C.: XFI: software
guards for system address spaces. In: OSDI 2006, pp. 75–88 (2006)

Live Path CFI Against Control Flow Hijacking Attacks 779

10. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano,
L., Pike, G.: Enforcing forward-edge control-flow integrity in GCC & LLVM. In:
USENIX Security 2014, pp. 941–955 (2014)

11. Zhang, C., Carr, S.A., Li, T., Ding, Y., Song, C., Payer, M., Song, D.: VTrust:
regaining trust on virtual calls. In: NDSS 2016 (2016)

12. Jang, D., Tatlock, Z., Lerner, S.: SafeDispatch: securing C++ virtual calls from
memory corruption attacks. In: NDSS 2014 (2014)

13. Haller, I., Göktaş, E., Athanasopoulos, E., Portokalidis, G., Bos, H.: ShrinkWrap:
VTable protection without loose ends. In: ACSAC 2015, pp. 341–350 (2015)

14. Fan, X., Sui, Y., Liao, X., Xue, J.: Boosting the precision of virtual call integrity
protection with partial pointer analysis for C++. In: ISSTA 2017, pp. 329–340
(2017)

15. Barbar, M., Sui, Y., Zhang, H., Chen, S., Xue, J.: Live path control flow integrity.
In: ICSE 2018 (2018)

16. Sui, Y., Xue, J.: On-demand strong update analysis via value-flow refinement. In:
FSE 2016, pp. 460–473 (2016)

17. Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow
integrity. In: OSDI 2016, pp. 147–160 (2016)

18. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
pointer integrity. In: OSDI 2014, pp. 147–163 (2014)

	Live Path CFI Against Control Flow Hijacking Attacks
	1 Introduction
	2 Related Works
	3 LPCFI Approach
	3.1 Program Representation
	3.2 Data Structures
	3.3 Instrumentation

	4 Implementation
	4.1 Instrumentation and Data Structure
	4.2 Lookup Operation on the fp-table
	4.3 Security Guarantee

	5 Proof-of-Concept Attack and Defence
	6 Conclusion
	References

