Honours/Master/PhD Thesis Projects Supervised by Dr. Yulei Sui

Projects

1 Static detection of software vulnerabilities using graph neural networks 2
2 Information flow analysis for mobile applications 3
3 Interactive online code analysis to improve software reliability and security 4
4 Machine-learning-guide program analysis for software vulnerability detection 5
5 Source code summarisation using deep reinforcement learning 6
6 Detecting smart contracts vulnerabilities in blockchain software 7
7 Preventing control flow attack using points-to analysis 8
8 Modeling life-cycle of Android applications using static program analysis 9
9 Static and dynamic data races detection for C/C++ programs 10
10 Symbolic execution for detecting system bugs on binary code 11
11 Designing and implementing a memory-safe C language and its runtime library 12
12 Dynamic program analysis for bug detection using static program slicing 13
13 Incremental program analysis for software testing 14

Research Environment

You will be working with a research team which has published high-quality papers and has devel-
oped a series of program analysis techniques and tools.

The projects will be conducted based on existing tools (e.g., SVF) and honours projects devel-
oped by our research team. The project will be in close cooperation with one or more researchers
and PhD students working in this area.

It offers a good opportunity for you to learn about software security, machine learning and
program analysis techniques for analyzing large-scale software systems. The necessary guidance
will be provided, and you will be given the chances to make practical impact to solve a real-world
problem.

https://yuleisui.github.io/#nav-tools
https://github.com/SVF-tools/SVF
https://yuleisui.github.io/#nav-projects

1 Static detection of software vulnerabilities using graph neu-
ral networks

1.1 Project Code:
CS-Project-1

1.2 Individual or group project?

Both suitable

1.3 Research Area:

Programming Languages, Security and Software Engineering

1.4 Pre-requisites:

Some understanding of machine-learning and software security analysis

1.5 Description:

Static bug detection, which approximates the runtime behaviour of a program without running it, is
the major way to pinpoint bugs at the early stage of software development cycle, thus reducing soft-
ware maintenance cost. The existing static analysis techniques (e.g., Coverity, Fortify Flawfinder,
RATS, Checkmarx and SVF) have shown their successes in detecting traditional vulnerabilities
(e.g., buffer overflows, memory leaks and use-after-frees). However, these approaches that rely on
conventional static analysis theories (e.g., data-flow and abstract interpretation) are still ineffec-
tive in detecting non-traditional bugs, such as insufficient control flow management (CWE-691),
business logic errors (CWE-840), and program behavioural problems (CWE-438), which are often
caused by bad programming practices.

It is non-trivial for human experts to define customised rules for detecting CFR vulnerabilities.
This is not only because vulnerability detection itself is difficult in a complex software system, but
also because different patterns may require different detecting rules. The quality of each rule also
varies with individuals. Thus, the results are often limited by their existing experience in sum-
marizing vulnerability patterns. Simply designing an unsound analysis using user-defined pattern
matching may result in a large number of false positives and/or false negatives.

This project aims to develop a new deep learning-based code embedding approach to detecting
a wide variety of software vulnerabilities using graph embedding. We aim to make a new attempt
by applying a recent graph convolutional network to embed code fragments in a compact and low-
dimensional code representation that preserves high-level control-flow information of a vulnerable
program, without the needs of manually defined rules. You are expected to apply the developed
technique to detect vulnerabilities in real-world open-source projects hosted on GitHub.

2 Information flow analysis for mobile applications

2.1 Project Code:
CS-Project-2

2.2 Individual or group project?

Both suitable

2.3 Research Area:

Security, Static Analysis and Software Engineering

2.4 Pre-requisites:

Some understanding of mobile application development, good software programming skills

2.5 Description:

Android grows extremely fast during recent years, dominating over 80of world smartphone market
by the end of 2013. Security issues stand out. Personal information and sensitive data leaked by
mobile applications has become an increasing critical problem. Mobile devices are ubiquitous.
Information leakage is a serious problem for world-wide users. Finding the information leakage
can greatly reduce the security risks and contribute to a safer mobile environment.

Traditional static value-flow analysis, which uses pointer/alias analysis for modelling program
control and data dependences, is useful but not enough for tracking information flow for mobile
applications. Special features and semantics in Android applications, such as message sending/re-
ceiving through internet, callbacks for system-event handling, Ul interaction, and components with
distinct life cycles, are the major obstacles for traditional program analysis.

This project aims to develop a new information flow analysis technique for detecting informa-
tion leakage in Android applications.

This project will produce an information leak analysis/tool to locate potential security problems
for Android applications and help improve the existing permission system in the Android OS to
prevent sensitive information from being leaked.

You are expected to build a tool for automatically detecting interesting but critical security bugs
such as information leakage for Android applications. It offers a good opportunity for you to learn
about program analysis techniques based on large-scale software systems and also to develop your
knowledge and skills in mobile security.

3 Interactive online code analysis to improve software reliabil-
ity and security

3.1 Project Code:
CS-Project-3

3.2 Individual or group project?

Both suitable

3.3 Research Area:

Visualisation, Programming and Software Engineering

3.4 Pre-requisites:

Software visualisation and some understanding of software security analysis

3.5 Description:

Nearly 90% of the software being developed and used today is based on open source code. Due to
the lack of adequate support for open source projects, the security vulnerabilities being discovered
in these projects compounds annually at a staggering rate. A single vulnerability in software can
be devastating, and developers can only fix issues which they can discover. WebSVF addresses
this by offering interactive code analysis to improve software quality, reliability, and security.

Static Value-Flow Analysis (SVF), an open source tool for programs written in C/C++ provides
analyses by scanning the flow of information and data individually and their interdependence for
increasingly improved precision. Among its derived applications, it is used to visualise a program
as an interactive 3D diagram which highlights files with errors and indicates the directional flow
of information. The WebSVF research project, had a simple objective, to create a user-friendly
Graphic User Interface (GUI) for SVF and its derived applications. Once the project achieved its
initial goal of visualising the analysis/testing stage of development in an unprecedented manner
using interactive bug reports and 3D diagrams, the project scope was modified to use these mod-
ular components and create an integrated online platform simplifying the remaining stages of the
software lifecycle.

The next stage in research will transform WebSVF into an open source platform-as-a-service
for interactive code analysis enabling users to create and share multiple, disposable online code
spaces with their software projects already configured and the necessary tools and extensions pre-
installed to allow seamless development, collaboration, testing and deployment.

This project will be based on our existing open-source tool WebSVFE. https://github.
com/SVF-tools/WebSVF.

https://github.com/SVF-tools/WebSVF
https://github.com/SVF-tools/WebSVF

4 Machine-learning-guide program analysis for software vul-
nerability detection

4.1 Project Code:
CS-Project-4

4.2 Individual or group project?

Both suitable

4.3 Research Area:

Programming Languages, Static Analysis and Software Engineering

4.4 Pre-requisites:

Some understanding of machine-learning and software security analysis

4.5 Description:

Use-after-free (UAF) vulnerabilities, i.e., dangling pointer dereferences (accessing objects that
have already been freed) in C/C++ programs can cause data corruption, information leaks, denial-
of-service attacks (via program crashes) [11], and control-flow hijacking attacks. While other
memory corruption bugs, such as buffer overflows, have become harder to exploit due to various
mitigation techniques, UAF has recently become a significantly more important target for exploita-
tion.

Typestate analysis represents a fundamental approach for detecting statically temporal mem-
ory safety errors, such as use-after-free (UAF) and null pointer dereferences. Typestate analysis
relies on precise pointer analysis for accurate software vulnerabilities detection. This project aims
to design a machine-learning guided static analysis approach that bridges the gap between the ex-
isting typestate and pointer analyses by capturing the correlations between program features and
complicated aliases that are answered conservatively by the state-of-the-art pointer analysis. The
proposed project aims to learn and predict complicated likelihood software bugs by steering type-
state analysis using Support Vector Machine (SVM) or TensorFlow.

S Source code summarisation using deep reinforcement learn-
ing

5.1 Project Code:

CS-Project-5

5.2 Individual or group project?

Both suitable

5.3 Research Area:

Static Analysis and Software Engineering

5.4 Pre-requisites:

Some understanding of machine-learning and software analysis

5.5 Description:

In the life cycle of software development, nearly 90% of the effort is used for maintenance, and
much of this effort is spent on understanding the maintenance task and related software source code
via code documents. Thus, it is essential for documentation to provide a high level description of
the task performed by code for software maintenance. Even though various techniques have been
developed to facilitate programmers during software implementation and testing, documenting
code with comments remains a labour-intensive task. In fact, few real-world software projects can
adequately document code to reduce future maintenance costs.

This project aims to develop a new approach to automatically generating software documents
(a.k.a source code summarisation) leveraging the recent advances in deep learning (particularly
reinforcement learning) and natural language processing techniques or developing new machine
learning models. The goal is to develop a new code representation to include both unstructured
(e.g., textual code tokens) and structured code information (control- and data-flows of a program)
to better support subsequent software engineering tasks, such as code summarisation.

6 Detecting smart contracts vulnerabilities in blockchain soft-
ware

6.1 Project Code:
CS-Project-6

6.2 Individual or group project?

Both suitable

6.3 Research Area:

Security, Static Analysis and Software Engineering

6.4 Pre-requisites:

Some understanding of Blockchain and software security analysis

6.5 Description:

Smart contract is a computer program that can be automatically executed. The execution of the
contract does not require third parties to supervise it. It can effectively simplify the transaction
process and has many advantages such as security and reliability. With the development of digital
currency, blockchain technology is being applied more and more in areas such as finance and lo-
gistics. Its core is a distributed database, with decentralization, transparency, openness, autonomy,
information can not be modified, and anonymity.

Due to the features of the blockchain, traditional software engineering can not be able to effec-
tively guide blockchain programming, in recent years, several detrimental software misbehaviors,
which caused significant monetary loss and community splits, have posed the problem of the cor-
rect design, validation and execution of smart contracts. In 2017 a bug discovered in a smart
contract library used by the Parity application, vulnerability makes it possible for hackers to be-
come the owner of the library through library functions. Then the suicide function is called to
cause the entire contract library to be destroyed. About 500K Ethers in the wallet was frozen.

The expected outcomes of the project are an open-source tool for automatically detecting bugs
of the blockchain applications that can find some existing popular known vulnerabilies written in
Solidity language.

7 Preventing control flow attack using points-to analysis

7.1 Project Code:
CS-Project-7

7.2 Individual or group project?

Both suitable

7.3 Research Area:

Security, Software Engineering and Programming Languages

7.4 Pre-requisites:

Some understanding about program analysis and good software development skills with large sys-
tems

7.5 Description:

Software is often subject to external attacks that aim to control its behavior. The majority of the
attacks rely on some form of control hijacking to redirect program execution. For instance, a buffer
overflow in an application may result in a call to a sensitive system function, possibly a function
that the application was never intended to use.

Control-Flow Integrity (CFI) is a defensive technique that can disallow illegal control transfers
that are not present in the applications Control Flow Graph (CFG). Many previous CFI approaches
build a memory safety sandbox to achieve integrity by extending the runtime system. The en-
forcement is done by assigning tags to indirect branch targets and checking that indirect control
transfers point to valid tags at runtime.

Fine-grained enforcement of CFI, however, can introduce significant overhead. The construc-
tion of an accurate control flow graph requires the use of a precise pointer analysis. This project
aims to enable precise demand-driven points-to analysis to provide strong CFI guarantee for pro-
tecting virtual call attacks in C++. Additionally, the students also encourage to investigate how
to leverage the static information to reduce overhead sandboxing by eliminating redundant instru-
mentations if they are proven to be unnecessary.

8 Modeling life-cycle of Android applications using static pro-
gram analysis

8.1 Project Code:
CS-Project-8

8.2 Individual or group project?

Both suitable

8.3 Research Area:

Software Engineering and Programming Languages

8.4 Pre-requisites:

Some understanding about program analysis and good software development skills with large sys-
tems

8.5 Description:

Android apps are not stand-alone applications but are plugins into the Android framework. An
unusual and fundamental feature of Android is that an application process’s lifetime is not directly
controlled by the application itself.

An app may consist of different components with a distinct lifecycle. During an apps execution,
the framework calls different callbacks within the app, notifying it of system events, which can
perform start/receive/destroy/pause/resume/shutdown operations in the app.

It is important that application developers understand how different application components
(in particular Activity, Service, and BroadcastReceiver) impact the lifetime of the application’s
process. Not using these components correctly can result in the system killing the application’s
process while it is doing important work, or result in poor user experience or consume limited
system resources unnecessarily.

9 Static and dynamic data races detection for C/C++ programs

9.1 Project Code:
CS-Project-9

9.2 Individual or group project?

Both suitable

9.3 Research Area:

Software Engineering and Programming Languages

9.4 Pre-requisites:

Some understanding about data races, dynamic analysis and good software development skills with
large systems

9.5 Description:

In the multicore era, concurrent programming, an effective way of utilising computation resources,
is more important than ever. However, concurrency bugs such as data races are one of most severe
defects that hamper concurrent programming. A data race occurs when two or more threads access
the same memory location and at least one of them is a write. Data races, as one of the major
sources of concurrency bugs, are hard to find during software testing since multi-threaded programs
usually exhibit an excessively large number of thread interleavings.

Existing dynamic race detectors (such as Google’s ThreadSanitizer and Intel’s Parallel Inspec-
tor) detect data races by repeatedly running such tools on different program inputs. In contrast,
static analysis tools can detect data races without actually running the program, but may report a
large number of false positives.

This project aims to develop a practical data-race detection tool by combining static and dy-
namic analysis techniques to reduce false positives and detect more data races that dynamic anal-
ysis tools cannot find alone.

This project will produce a tool to automatically detect data races in concurrent C/C++ +
pthread programs. It offers a good opportunity for you to learn about program analysis techniques
for large-scale software systems and also to develop your knowledge and skills in concurrent pro-
gramming.

10

10 Symbolic execution for detecting system bugs on binary code

10.1 Project Code:
CS-Project-10

10.2 Individual or group project?

Individual

10.3 Research Area:

Software Engineering and Binary Code Analysis

10.4 Pre-requisites:

Some understanding about reverse engineering and good software development skills with large
systems

10.5 Description:

Binary analysis is powerful for detecting bugs and security vulnerabilities for programs whose
source code is not available. However, due to the lack of source-code information, binaries are
challenging to analyse. Symbolic execution, as a promising approach for software testing, is a
program analysis technique that executes a program with symbolic rather than concrete inputs.
Symbolic execution can be used to detect software bugs by automatically generating test cases to
replay those errors. Some existing tools include KLEE, CUTE and PathFinder.

This project aims to develop new symbolic execution techniques for detecting system errors in
binary code based on some existing open-source tools such as BitBlaze (http://bitblaze.
cs.berkeley.edu).

11

http://bitblaze.cs.berkeley.edu
http://bitblaze.cs.berkeley.edu

11 Designing and implementing a memory-safe C language and
its runtime library

11.1 Project Code:
CS-Project-11

11.2 Individual or group project?

Both suitable

11.3 Research Area:

Programming Languages and Compilers

11.4 Pre-requisites:

Good understanding about programming languages, e.g., C/C++, and good software development
skills with large systems.

11.5 Description:

C is one of the most widely used programming languages of all time. It is the foundation language
of many system software components such as OS and embedded applications. However, its unsafe
features, such as weak-typing, pointer arithmetic, void pointers and non-safe casting, often lead to
memory corruption errors, including buffer overflow, memory leaks and dangling pointers.

This project aims to develop a new safe C language (implemented by a compiler front-end and
a runtime library in LLVM) by eliminating undisciplined use of C features and extending LLVM’s
native executable runtime environment to guarantee memory safety.

12

12 Dynamic program analysis for bug detection using static
program slicing

12.1 Project Code:
CS-Project-12

12.2 Individual or group project?

Individual

12.3 Research Area:

Programming Languages, Compilers and Software Engineering

12.4 Pre-requisites:

Some understanding about programming analysis and good software development skills

12.5 Description:

Static analysis tools find bugs in a program without executing the program. By reasoning statically
about all possible execution paths, they find bugs without relying on any program inputs but can
report excessively many false positives. In contrast, dynamic program analysis tools find bugs for
some particular program inputs. They are precise (by yielding few false positives) but must be
repeatedly run for a large number of test cases (often blindly) to increase coverage.

This project aims to develop some dynamic analysis techniques for C/C++ programs to find
software bugs (e.g., memory access errors) more efficiently with improved coverage based on
static program slicing and recent advances on pointer analysis.

13

13 Incremental program analysis for software testing

13.1 Project Code:
CS-Project-13

13.2 Individual or group project?

Individual

13.3 Research Area:

Software Engineering and Automated Software Testing

13.4 Pre-requisites:

Some understanding about static program analysis, program slicing and good software develop-
ment skills with large systems

13.5 Description:

Modern software development involves many incremental changes. Regression testing provides
a reliable means to verify that code base changes and additions don not break an application’s
existing functionality.

This project aims to develop techniques to perform incremental program analysis by leveraging
previous analysis results and automatically reusing test cases to avoid over-analysing between
different software revisions based on small program changes.

14

	Static detection of software vulnerabilities using graph neural networks
	Information flow analysis for mobile applications
	Interactive online code analysis to improve software reliability and security
	Machine-learning-guide program analysis for software vulnerability detection
	Source code summarisation using deep reinforcement learning
	Detecting smart contracts vulnerabilities in blockchain software
	Preventing control flow attack using points-to analysis
	Modeling life-cycle of Android applications using static program analysis
	Static and dynamic data races detection for C/C++ programs
	Symbolic execution for detecting system bugs on binary code
	Designing and implementing a memory-safe C language and its runtime library
	Dynamic program analysis for bug detection using static program slicing
	Incremental program analysis for software testing

